Question

Prove that the integral from 0 to Infinity (sin^2(x)e^-x)dx converges using the comparison test.

Prove that the integral from 0 to Infinity (sin^2(x)e^-x)dx converges using the comparison test.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
definite integral 0 to 7 of e^(x)sin(x)dx
definite integral 0 to 7 of e^(x)sin(x)dx
Determine whether the improper integral from 5 to infinity 3/square root x dx converges or​ diverges,...
Determine whether the improper integral from 5 to infinity 3/square root x dx converges or​ diverges, and find the value if it converges. Select the correct choice below and fill in any answer boxes within your choice. A. The value of the integral B.The integral diverges.
Explain whether the following integrals converge or not. If the integral converges, find the value. If...
Explain whether the following integrals converge or not. If the integral converges, find the value. If the integral does not converge, describe why (does it go to +infinity, -infinity, oscillate, ?) i) Integral from x=1 to x=infinity of x^-1.4 dx ii) Integral from x=1 to x=infinity of 1/x^2 * (sin x)^2 dx iii) Integral from x=0 to x=1 of 1/(1-x) dx
Determine the convergence or divergence if each integral by using a comparison function. Show work using...
Determine the convergence or divergence if each integral by using a comparison function. Show work using the steps below: A. Indicate the comparison function you are using. B. Indicate if your comparison function is larger or smaller than the original function. C. Indicate if your comparison integral converges or diverges. Explain why. D. State if the original integral converges or diverges. If it converges, you don’t need to give the value it converges to. 11. integral from 1 to infinity...
Integrate -infinity to -3 x/(x^2+x-2)dx if it converges
Integrate -infinity to -3 x/(x^2+x-2)dx if it converges
using reduction formula*** 13. Evaluate, ∫ sin 5x cos x dx. Also prove that, ∫ sin...
using reduction formula*** 13. Evaluate, ∫ sin 5x cos x dx. Also prove that, ∫ sin mx cos nx dx = 0
a). Find dy/dx for the following integral. y=Integral from 0 to cosine(x) dt/√1+ t^2 , 0<x<pi  ...
a). Find dy/dx for the following integral. y=Integral from 0 to cosine(x) dt/√1+ t^2 , 0<x<pi   b). Find dy/dx for tthe following integral y=Integral from 0 to sine^-1 (x) cosine t dt
Question about using the convolution of distribution: 1. we have the formula: integral fx(x)fy(z-x)dx=integral fx(z-x)fy(x)dx I...
Question about using the convolution of distribution: 1. we have the formula: integral fx(x)fy(z-x)dx=integral fx(z-x)fy(x)dx I know this are equivalent. However, how do I decide which side I should use ? For example,X~Exp(1) and Y~Unif [0,1] X and Y independnt and the textbook use fx(z-x)fy(x)dx. However, can I use the left hand side fx(x)fy(z-x)dx???is there any constraint for using left or right or actually both can lead me to the right answer??? 2. For X and Y are independent and...
Question B:Consider the integral of sin(x) * cos(x) dx. i) Do it using integration by parts;...
Question B:Consider the integral of sin(x) * cos(x) dx. i) Do it using integration by parts; you might need the “break out of the loop” trick. I would do u=sin(x), dv=cos(x)dx ii) Do it using u-substitution. I would do u=cos(x) iii) Do it using the identity sin(x)*cos(x)=0.5*sin(2x) iv) Explain how your results in parts i,ii,iii relate to each other.
Prove that for positive​ integers, Integral from nothing to nothing tangent Superscript n Baseline x dx...
Prove that for positive​ integers, Integral from nothing to nothing tangent Superscript n Baseline x dx equals StartFraction tangent Superscript n minus 1 Baseline x Over n minus 1 EndFraction minus Integral from nothing to nothing tangent Superscript n minus 2 Baseline x dx comma n not equals 1∫tannx dx=tann−1xn−1−∫tann−2x dx, n≠1. Use the formula to evaluate Integral from 0 to StartFraction pi Over 3 EndFraction 4 tangent Superscript 5 Baseline x dx∫0π34tan5x dx.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT