Question

Determine whether the sequence a_n = (3^n + 4^n)^(1/n) diverges or converges

Determine whether the sequence a_n = (3^n + 4^n)^(1/n) diverges or converges

Homework Answers

Answer #1

please comment for any doubts

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
determine whether the sequence converges or diverges. a_n=(-1)^n n+7/n^2+2
determine whether the sequence converges or diverges. a_n=(-1)^n n+7/n^2+2
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = (4^n+1) / 9^n
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) a n = n 3 /n + 2
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = 4 − (0.7)n lim n→∞ an = please box answer
Determine whether the limit converges or diverges, if it converges, find the limit. an = (1+(4/n))^n
Determine whether the limit converges or diverges, if it converges, find the limit. an = (1+(4/n))^n
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
1) Determine if the sequence converges or Diverges. If it converges find the limit. an=n2*(e-n)
Determine whether the following series converges or diverges:∞∑n=1 ln(1 +1/n).
Determine whether the following series converges or diverges:∞∑n=1 ln(1 +1/n).
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges....
Use the limit comparison test to determine whether the series Σ∞ n=1 (2^n)/(3+4^n) converges or diverges. Show your work. What series did you use for the comparison? How did you figure out the behavior (converge or diverge) of the series that you used for the comparison?
Determine whether the series ∞ ∑ n=1 (e^n+1+ (−1)^n+1)/(π^n) converges or diverges. If it is convergent,...
Determine whether the series ∞ ∑ n=1 (e^n+1+ (−1)^n+1)/(π^n) converges or diverges. If it is convergent, find its sum.
Let (a_n)∞n=1 be a sequence defined recursively by a1 = 1, a_n+1 = sqrt(3a_n) for n...
Let (a_n)∞n=1 be a sequence defined recursively by a1 = 1, a_n+1 = sqrt(3a_n) for n ≥ 1. we know that the sequence converges. Find its limit. Hint: You may make use of the property that lim n→∞ b_n = lim n→∞ b_n if a sequence (b_n)∞n=1 converges to a positive real number.