Question

The position function of an object moving along a straight line is given by s =...

The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 144 ft/sec, so that its height (in feet) after t sec is given by s = f(t) = 144t − 16t2.

What is the average velocity of the ball over the following time intervals?

(a) [4, 5] ft/sec

(b) [4, 4.5] ft/sec

(C)[4, 4.1] ft/sec

Homework Answers

Answer #1

we are given equation for position as

(a)

we can use formula

interval is [4,5]

now, we can plug value

..........Answer

(b)

we can use formula

interval is [4,4.5]

now, we can plug value

..........Answer

(C)

we can use formula

interval is [4,4.1]

now, we can plug value

..........Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the position function s(t) = −16t2 + v0t + s0 for free-falling objects. A ball...
Use the position function s(t) = −16t2 + v0t + s0 for free-falling objects. A ball is thrown straight down from the top of a 500-foot building with an initial velocity of −40 feet per second. (a) Determine the position and velocity v(t) functions for the ball. s(t) = v(t) = (b) Determine the average velocity, in feet per second, on the interval [1, 2]. ft/s (c) Find the instantaneous velocities, in feet per second, when t = 1and t...
Use the position equation given below, where s represents the height of the object (in feet),...
Use the position equation given below, where s represents the height of the object (in feet), v0 represents the initial velocity of the object (in feet per second), s0 represents the initial height of the object (in feet), and t represents the time (in seconds), as the model for the problem. s = ?16t2 + v0t + s0 An aircraft flying at 300 feet over level terrain drops a supply package. (a) How long will it take until the supply...
Position and Time The position of an object moving in a straight line is given by...
Position and Time The position of an object moving in a straight line is given by x = 5t - 8 t 2 + 6t 3, where x is in meters and t in seconds. (a) What is the position of the object at t = 1s? m What is the position of the object at t = 2?   m What is the position of the object at t = 3? m What is the position of the object at...
The position of an object moving horizontally after t seconds is given by the function s...
The position of an object moving horizontally after t seconds is given by the function s =12t-t^3 ​, for t > 0​, where s is measured in​ feet, with s g> 0 corresponding to positions right of the origin. a. When is the object​ stationary, moving to the​ right, and moving to the​ left? b. Determine the velocity and acceleration of the object at t=4. c. Determine the acceleration of the object when its velocity is zero. d. On what...
A ball is thrown straight down from the top of a 497-foot building with an initial...
A ball is thrown straight down from the top of a 497-foot building with an initial velocity of -15 feet per second. Use the position function below for free-falling objects. s(t) = -16t2 + v0t + s0 What is its velocity after 2 seconds? v(2) =  ft/s What is its velocity after falling 316 feet? v =  ft/s
The position (in meters) of an object moving in a straight line s(t)=√ 3t+1 −2t^2+1 where...
The position (in meters) of an object moving in a straight line s(t)=√ 3t+1 −2t^2+1 where t is measured in seconds. (a) Find the average velocity on [0,1]. (b) Find the instantaneous velocity at t=1. (c) Find the acceleration at t=1.
The position function of an object moving horizontally along a straight line as a function of...
The position function of an object moving horizontally along a straight line as a function of timeiss(t)=t2 –3t+2,t≥0,wheresisinmetres,andtisinseconds. Determine the velocity of the object when its position is zero. When is the object speeding up? (calculus pls)
A rock is dropped from a height of 64 ft. It is determined that its height...
A rock is dropped from a height of 64 ft. It is determined that its height (in feet) above ground t seconds later (for 0≤t≤2) is given by s(t)=−16t2+64. Find the average velocity of the rock over each of the given time intervals. Use this information to guess the instantaneous velocity of the rock at time t=0.5. 1. [0.49, 0.5] 2. [0.5, 0.51] Can you please show every step to solving this problem?
An object is moving along a straight line, and the uncertainty in its position is 3.00m....
An object is moving along a straight line, and the uncertainty in its position is 3.00m. (a) find the minimum uncertainty in the momentum of the object. find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass =0.0450 kg) and (c) an electron.
An object is moving along a straight line, and the uncertainty in its position is 2.80...
An object is moving along a straight line, and the uncertainty in its position is 2.80 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron.