Question

A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k....

A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k. Its acceleration is ⃗a(t) = 4t⃗i + 3t⃗j − ⃗k. Find its position at t = 3.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity...
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity v(0) = i - j + k. Its acceleration is a(t) = 4t i + 4t j + k. Find its velocity, v(t), and position, r(t), at time t.
Find the position vector of a particle that has acceleration 2i+4tj+3t^2k, initial velocity v(0)=j+k and initial...
Find the position vector of a particle that has acceleration 2i+4tj+3t^2k, initial velocity v(0)=j+k and initial position r(0)=j+k
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the...
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the initial position vector is r(0)=i+j+k, compute: A. The velocity vector v(t) B. The position vector r(t)
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position...
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position vectors. a(t)  =  5 i  +  9t k,    v(0)  =  3 i  −  j,    r(0)  =  j  +  6 k (a) Find the velocity of the particle at time t. (b) Find the position of the particle at time t.
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 2 i + 6t j + 12t2 k, v(0) = i, r(0) = 3 j − 6 k
A 3.00-kg particle starts from the origin at time zero. Its velocity as a function of...
A 3.00-kg particle starts from the origin at time zero. Its velocity as a function of time is given by v = (3t^2) i+ (2t) j where v is in meters per second and t is in seconds. (a) Find its position at t = 1s. (b) What is its acceleration at t = 1s ? (c) What is the net force exerted on the particle at t = 1s ?   (d) What is the net torque about the origin...
When at the origin (0,0) the initial velocity of a particle is ?⃗0 = (2.0?̂ +...
When at the origin (0,0) the initial velocity of a particle is ?⃗0 = (2.0?̂ + 5.0?̂) ? / ? and its constant acceleration is ?⃗ = (7.0?̂ + 5.0?̂) ? / ? two . Find the final position of the particle when its velocity is ?⃗ = (16.0?̂ + 15.0?̂) ? / ?. (First find the time it takes to reach your position final).
A Particle is subjected to a = -ks. It starts at the origin s = 0...
A Particle is subjected to a = -ks. It starts at the origin s = 0 with an initial velocity v0 = 9.7 m/s at time t = 0, and the magnitude of k is 0.17. If t= 5.5 sec what is s, v, and a?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT