Question

Consider the following subset: W =(x, y, z) ∈ R^3; z = 2x - y from...

Consider the following subset:
W =(x, y, z) ∈ R^3; z = 2x - y from R^3.
 
Of the following statements, only one is true. Which?

(1) W is not a subspace of R^3

(2) W is a subspace of R^3
and {(1, 0, 2), (0, 1, −1)} is a base of W

(3) W is a subspace of R^3
and {(1, 0, 2), (1, 1, −3)} is a base of W

(4) W is a subspace of R^3
and {(1, 0, 2), (0, 1, −1), (−1, −1, −1)} is a
base of W

(5) W is a line in R^3 having (2, −1, −1) as a directing vector

(6) W is not a plane in R^3 having vector (2, −1, 1) as vector
normal

Homework Answers

Answer #1

That means option 3 is correct.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
Let W = {(x, y, z, w) ∈ R 4 | x − z = 0...
Let W = {(x, y, z, w) ∈ R 4 | x − z = 0 and y + 2z = 0} (a) Find a basis for W. (b) Apply the Gram-Schmidt algorithm to find an orthogonal basis for the subspace (2) U = Span{(1, 0, 1, 0),(1, 1, 0, 0),(0, 1, 0, 1)}.
1)T F: All (x, y, z) ∈ R 3 with x = y + z is...
1)T F: All (x, y, z) ∈ R 3 with x = y + z is a subspace of R 3 9 2) T F: All (x, y, z) ∈ R 3 with x + z = 2018 is a subspace of R 3 3) T F: All 2 × 2 symmetric matrices is a subspace of M22. (Here M22 is the vector space of all 2 × 2 matrices.) 4) T F: All polynomials of degree exactly 3 is...
3. Which of the following sets spans P2(R)? (a) {1 + x, 2 + 2x 2}...
3. Which of the following sets spans P2(R)? (a) {1 + x, 2 + 2x 2} (b) {2, 1 + x + x 2 , 3 + 2x + 2x 2} (c) {1 + x, 1 + x 2 , x + x 2 , 1 + x + x 2} 4. Consider the vector space W = {(a, b) ∈ R 2 | b > 0} with defined by (a, b) ⊕ (c, d) = (ad + bc, bd)...
Prove that the set S = {(x, y, z) ∈ R 3 : x + y...
Prove that the set S = {(x, y, z) ∈ R 3 : x + y + z = b}. is a subspace of R 3 if and only if b = 0.
Determine if the subset W={[x y]∈R2∣ x+y ≥0} is a subspace of R2.
Determine if the subset W={[x y]∈R2∣ x+y ≥0} is a subspace of R2.
Consider the subspace S = {[x, y, 2x + 3y] | x, y ∈ R} of...
Consider the subspace S = {[x, y, 2x + 3y] | x, y ∈ R} of R 3 . (a) Find a basis of S and dim (S). (b) Extend the basis of S in (a) to a basis of R 3 .
Let x,y,zx,y,z be (non-zero) vectors and suppose w=10x+10y−4zw=10x+10y−4z. If z=2x+2yz=2x+2y, then w=w= x+x+  yy. Using the calculation...
Let x,y,zx,y,z be (non-zero) vectors and suppose w=10x+10y−4zw=10x+10y−4z. If z=2x+2yz=2x+2y, then w=w= x+x+  yy. Using the calculation above, mark the statements below that must be true. A. Span(x, z) = Span(w, z) B. Span(w, y, z) = Span(x, y) C. Span(w, z) = Span(w, y) D. Span(w, x) = Span(x, y, z) E. Span(w, y) = Span(w, x, y)
for w=f(x,y,z)=2x^4y^2-6xz^3  use the tangent plane to estimate f(-2.03,1.04,1.02)
for w=f(x,y,z)=2x^4y^2-6xz^3  use the tangent plane to estimate f(-2.03,1.04,1.02)
1. Suppose that x, y, z, and w are int variables. What is stored in x,...
1. Suppose that x, y, z, and w are int variables. What is stored in x, y, z, and w after the following statements execute? (3, 6) x = 9; y = x - 4; z = (y + 7) % 6; w = (x * z) / y - 3; z = w + (x - y + 2) % x)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT