Question

Let Q1 be a constant so that Q1 = L(20, 12), where z = L(x, y)...

Let Q1 be a constant so that Q1 = L(20, 12), where z = L(x, y) is the equation of the tangent plane to the surface z = ln(19x + 8y) at the point (x0, y0) = (7, 11). Let Q = ln(3 + |Q1|). Then T = 5 sin2 (100Q)

satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. — (E) 4 ≤ T ≤ 5

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Q1 be a constant so that Q1 = L(−3, 2), where z = L(x, y)...
Let Q1 be a constant so that Q1 = L(−3, 2), where z = L(x, y) is the equation of the tangent plane to the surface z = ln(5x − 7y) at the point (x0, y0) = (2, 1). Let Q = ln(3 + |Q1|). Then T = 5 sin2 (100Q) satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. —...
Let Q1 be a constant so that Q1 = L(5, 17), where z = L(x, y)...
Let Q1 be a constant so that Q1 = L(5, 17), where z = L(x, y) is the equation of the tangent plane to the surface z = x 6 + (y − x) 4 at the point (x0, y0) = (3, 4). Let Q = ln(3 + |Q1|). Then T = 5 sin2 (100Q) satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤...
1. Let Q1 = x, where (x, y) satisfies that (1)x + (−3)y = −22 (−1)x...
1. Let Q1 = x, where (x, y) satisfies that (1)x + (−3)y = −22 (−1)x + (7)y = 54 . Let Q = ln(3+|Q1|). Then T = 5 sin2 (100Q) satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. — (E) 4 ≤ T ≤ 5. 2. Let (Q1, Q2) = (x, y), where (x, y) solves x = (7)x...
Let Q1, Q2, Q3 be constants so that (Q1, Q2) is the critical point of the...
Let Q1, Q2, Q3 be constants so that (Q1, Q2) is the critical point of the function f(x, y) = xy + y − x, and Q3 = 1 if f has a local minimum at (Q1, Q2), Q3 = 2 if f has a local maximum at (Q1, Q2), Q3 = 3 if f has a saddle point at (Q1, Q2), and Q3 = 4 otherwise. Let Q = ln(3 + |Q1| + 2|Q2| + 3|Q3|). Then T =...
Let Q1, Q2, Q3 be constants so that (Q1, Q2) is the critical point of the...
Let Q1, Q2, Q3 be constants so that (Q1, Q2) is the critical point of the function f(x, y) = xy − 5x − 5y + 25, and Q3 = 1 if f has a local minimum at (Q1, Q2), Q3 = 2 if f has a local maximum at (Q1, Q2), Q3 = 3 if f has a saddle point at (Q1, Q2), and Q3 = 4 otherwise. Let Q = ln(3 + |Q1| + 2|Q2| + 3|Q3|). Then...
2. Let Q1 = y(2), Q2 = y(3), where y = y(x) solves y' + 2xy...
2. Let Q1 = y(2), Q2 = y(3), where y = y(x) solves y' + 2xy = 2x^3 , y(0) = 1. Let Q = ln(3 + |Q1| + 2|Q2|). Then T = 5 sin^2 (100Q) satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. — (E) 4 ≤ T ≤ 5.
Let F⃗=xi⃗+(x+y)j⃗+(x−y+z)k⃗ . Let the line l be x=t−1, y=3−4t , z=1−4t . (a) Find a...
Let F⃗=xi⃗+(x+y)j⃗+(x−y+z)k⃗ . Let the line l be x=t−1, y=3−4t , z=1−4t . (a) Find a point P=(x0,y0,z0) where F⃗ is parallel to l . Find a point Q=(x1,y1,z1) at which F⃗ and l are perpendicular. Give an equation for the set of all points at which F⃗ and l are perpendicular.
Consider the surfaces x^2 + y^2 + z^2 = 1 and (z +√2)^2 = x^2 +...
Consider the surfaces x^2 + y^2 + z^2 = 1 and (z +√2)^2 = x^2 + y^2, and let (x0, y0, z0) be a point in their intersection. Show that the surfaces are tangent at this point, that is, show that they have a common tangent plane at (x0, y0, z0).
Topic: Calculus 3 / Differential Equation Q1) Let (x0, y0, z0) be a point on the...
Topic: Calculus 3 / Differential Equation Q1) Let (x0, y0, z0) be a point on the curve C described by the following equations F1(x,y,z)=c1 , F2(x,y,z)=c2 . Show that the vector [grad F1(x0, y0, z0)] X [grad F2(x0, y0, z0)] is tangent to C at (x0, y0, z0) Q2) (I've posted this question before but nobody answered, so please do) Find a vector tangent to the space circle x2 + y2 + z2 = 1 , x + y +...
prove that the equation of the plane tangent to the sphere x^2 + y^2 + z^2...
prove that the equation of the plane tangent to the sphere x^2 + y^2 + z^2 = a^2 at the point (x0, y0, z0) on the sphere is x*x0 + y*y0 + z*z0 = a^2