Question

Prove or disprove: If a real 5x5 matrix has a non-real eigenvalue, then it has 5...

Prove or disprove: If a real 5x5 matrix has a non-real eigenvalue, then it has 5 distinct eigenvalues.

Homework Answers

Answer #1

The statement is wrong,,

There are matrices, having non real eigenvalue , can have non-distinct Eigenvalues...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let ? be an eigenvalue of the ? × ? matrix A. Prove that ? +...
Let ? be an eigenvalue of the ? × ? matrix A. Prove that ? + 1 is an eigenvalue of the matrix ? + ?? .
Let A be a matrix with m distinct, non-zero, eigenvalues. Prove that the eigenvectors of A...
Let A be a matrix with m distinct, non-zero, eigenvalues. Prove that the eigenvectors of A are linearly independent and span R^m. Note that this means (in this case) that the eigenvectors are distinct and form a base of the space.
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Assume A is an invertible matrix 1. prove that 0 is not an eigenvalue of A...
Assume A is an invertible matrix 1. prove that 0 is not an eigenvalue of A 2. assume λ is an eigenvalue of A. Show that λ^(-1) is an eigenvalue of A^(-1)
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and...
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring. Prove or disprove: (Z5,+, .), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring.
prove or disprove that the determinant of a square matrix can also be evaluated by cofactor...
prove or disprove that the determinant of a square matrix can also be evaluated by cofactor expansion along the main diagonal of the square matrix
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric...
The matrix A has an eigenvalue λ with an algebraic multiplicity of 5 and a geometric multiplicity of 2. Does A have a generalised eigenvector of rank 3 corresponding to λ? What about a generalised eigenvector of rank 5?
v is an eigenvector with eigenvalue 5 for the invertible matrix A. Is v an eigenvector...
v is an eigenvector with eigenvalue 5 for the invertible matrix A. Is v an eigenvector for A^-2? Show why/why not.
Prove or disprove: Can a symmetric matrix be necessarily diagonalizable? Please show clear steps. Thank you.
Prove or disprove: Can a symmetric matrix be necessarily diagonalizable? Please show clear steps. Thank you.
) Prove or disprove the statements: (a) If x is a real number such that |x...
) Prove or disprove the statements: (a) If x is a real number such that |x + 2| + |x| ≤ 1, then |x ^2 + 2x − 1| ≤ 2. (b) If x is a real number such that |x + 2| + |x| ≤ 2, then |x^ 2 + 2x − 1| ≤ 2. (c) If x is a real number such that |x + 2| + |x| ≤ 3, then |x ^2 + 2x − 1 |...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT