Question

i) Approximate the function f(x) = cos x by a Taylor polynomial of degree 3 at...

i) Approximate the function f(x) = cos x by a Taylor polynomial of degree 3 at a = π/3

ii) What is the maximum error when π/6 ≤ x ≤ π/2? (this is the continuation of part i))

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
let f(x)=cos(x). Use the Taylor polynomial of degree 4 centered at a=0 to approximate f(pi/4)
let f(x)=cos(x). Use the Taylor polynomial of degree 4 centered at a=0 to approximate f(pi/4)
approximate the value of ln(5.3) using fifth degree taylor polynomial of the function f(x) = ln(x+2)....
approximate the value of ln(5.3) using fifth degree taylor polynomial of the function f(x) = ln(x+2). Find the maximum error of your estimate. I'm trying to study for a test and would be grateful if you could explain your steps. Saw comment that a point was needed but this was all that was provided
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)=...
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)= e^ x sin(x) about the point a = 0. (b) Bound the error |f(x) − p3(x)| using the Taylor Remainder R3(x) on [−π/4, π/4]. (c) Let pn(x) be the Taylor Polynomial of degree n of f(x) = cos(x) about a = 0. How large should n be so that |f(x) − pn(x)| < 10^−5 for −π/4 ≤ x ≤ π/4 ?
approximate the function f(x)= 1/sqrt(x) by a taylor polynomial with degree 2 and center a=4. how...
approximate the function f(x)= 1/sqrt(x) by a taylor polynomial with degree 2 and center a=4. how accurate is this approximation on the interval 3.5<x<4.5?
Find the Taylor polynomial of degree 3, centered at a=4 for the function f(x)= sqrt (x+4)
Find the Taylor polynomial of degree 3, centered at a=4 for the function f(x)= sqrt (x+4)
Find the degree 3 Taylor polynomial T3(x) of function f(x)=(7x−5)^3/2 at a=2. T3(x)=
Find the degree 3 Taylor polynomial T3(x) of function f(x)=(7x−5)^3/2 at a=2. T3(x)=
Find the degree 3 Taylor polynomial T3 (x) centered at a = 4 of the function...
Find the degree 3 Taylor polynomial T3 (x) centered at a = 4 of the function f(x) = (-7x+36)4/3
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3....
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3. T3(x)= ? True False Cannot be determined The function f(x)=(7x−20)4/3 equals its third degree Taylor polynomial T3(x) centered at a=4. Hint: Graph both of them. If it looks like they are equal, then do the algebra.
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using...
1. Find T5(x): Taylor polynomial of degree 5 of the function f(x)=cos(x) at a=0. T5(x)=   Using the Taylor Remainder Theorem, find all values of x for which this approximation is within 0.00054 of the right answer. Assume for simplicity that we limit ourselves to |x|≤1. |x|≤ = 2. Use the appropriate substitutions to write down the first four nonzero terms of the Maclaurin series for the binomial:   (1+7x)^1/4 The first nonzero term is:     The second nonzero term is:     The third...
Find the degree-2 Taylor polynomial for the function f(x, y) = exy at the point (4,...
Find the degree-2 Taylor polynomial for the function f(x, y) = exy at the point (4, 0).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT