Question

If f is a differentiable function such that f ' ( x ) ≥ 8 ,...

If f is a differentiable function such that f ' ( x ) ≥ 8 , find the largest value of M so that f ( 4 ) ≥ M whenever f ( 2 ) = 3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose f(x) is a differentiable function such that f(2)=3 and f'(x) is less than or equal...
Suppose f(x) is a differentiable function such that f(2)=3 and f'(x) is less than or equal to 4 for all x in the interval [0,5]. Which statement below is true about the function f(x)? The Mean Value Theorem implies that f(4)=11. The Mean Value Theorem implies that f(5)=15. None of the other statements is correct. The Intermediate Value Theorem guarantees that there exists a root of the function f(x) between 0 and 5. The Intermediate Value Theorem implies that f(5)...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)?...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f'(x)? Let h(x) be a continuous function such that h(a) = m and h'(a) = 0. Is there enough evidence to conclude the point (a, m) must be a maximum or a minimum?...
If f is a differentiable function such that f′(x) = (x^2− 16)*g(x), where g(x)>0 for all...
If f is a differentiable function such that f′(x) = (x^2− 16)*g(x), where g(x)>0 for all x, at which value(s) of x does f have a local maximum? 1. At both x=-4,4 2. Only at x=-16 3. Only at x=4 4. At both x=-16,16 5. Only at x=-4 6. Only at x=16
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
Suppose that f(x)=x+6/x−1 is differentiable and has an inverse for x>1 and f(2)=8. Find (f−1)′(8).
Suppose that f(x)=x+6/x−1 is differentiable and has an inverse for x>1 and f(2)=8. Find (f−1)′(8).
Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and...
Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and f ' (-2) = 2. Find g ' (-2).
Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x =...
Consider the function g(x) = |3x + 4|. (a) Is the function differentiable at x = 10? Find out using ARCs. If it is not differentiable there, you do not have to do anything else. If it is differentiable, write down the equation of the tangent line thru (10, g(10)). (b) Graph the function. Can you spot a point “a” such that the tangent line through (a, f(a)) does not exist? If yes, show using ARCS that g(x) is not...
Given that a function F is differentiable. a f(a) f1(a) 0 0 2 1 2 4...
Given that a function F is differentiable. a f(a) f1(a) 0 0 2 1 2 4 2 0 4 Find 'a' such that limx-->a(f(x)/2(x−a)) = 2. Provide with hypothesis and any results used.
a) Find f(x) is f(x) is differentiable everywhere and f'(x)= { 2x+8, x<2 3x2, x>2 given...
a) Find f(x) is f(x) is differentiable everywhere and f'(x)= { 2x+8, x<2 3x2, x>2 given f(1)=1 b) the point (-1,2) is on the graph of y2-x2+2x=5. Approximate the value of y when x=1.1. Then use dy/dx and d2y/dx2 to determine if the point (1,-2) is a max, min, or neither.
(a) Show that a differentiable function f decreases most rapidly at x in the direction opposite...
(a) Show that a differentiable function f decreases most rapidly at x in the direction opposite the gradient vector, that is, in the direction of −∇f(x). Let θ be the angle between ∇f(x) and unit vector u. Then Du f = |∇f| Correct: Your answer is correct. . Since the minimum value of Correct: Your answer is correct. is -1 Correct: Your answer is correct. occurring, for 0 ≤ θ < 2π, when θ = Correct: Your answer is correct....