Find the exact values of the six trigonometric functions of the angle θ shown in the figure.
sin(θ) | = | |
cos(θ) | = | |
tan(θ) | = | |
csc(θ) | = | |
sec(θ) | = | |
cot(θ) | = |
Consider a unit circle
Applying Pythagoras theorem
( hypoteneous ) = sqrt [ ( side 1 )^2 + ( side 2 )^2 ]
= sqrt [ 1^2 + 1^2 ]
= sqrt ( 2 ) = √ 2
sin( θ ) = opposite side / hypoteneous = 1 / √ 2
csc( θ ) = 1 / sin( θ ) = 1 / ( 1 / √ 2 ) = √ 2
cos( θ ) = adjacent side / hypoteneous = 1 / √ 2
sec( θ ) = 1 / cos( θ ) = 1 / ( 1 / √ 2 ) = √ 2
tan( θ ) = sin( θ ) / cos( θ ) = [ 1 / √ 2 ] / [ 1 / √ 2 ] = 1
cot( θ ) = 1 / tan( θ ) = 1 / 1 = 1
Get Answers For Free
Most questions answered within 1 hours.