Question

A reservoir in the shape of an inverted cone is filled to the top with water...

A reservoir in the shape of an inverted cone is filled to the top with water of density 62.4 lb/ft^3. The radius of the reservoir is 35 ft and it is 40 ft deep.

What is the work (ft-lb) required in pumping all of the water to a level of 15 ft above the top of the reservoir?

Possible Answers:

25480000π

12980931π

22098083π

30982856π

PLEASE SHOW DETAILED WORK CLEARLY!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1 C. A reservoir in the shape of a straight circular cone is filled with water....
1 C. A reservoir in the shape of a straight circular cone is filled with water. If the tank height is 10 feet and the radius at the top is 6 feet, find the job done by pumping the water to the top edge of the tank. Find the work done by bobbing the water to a height of 10 feet above the top edge of the reservoir. Remember that the volume is equal to radio2x height. The density of...
A tank in the shape of an inverted right circular cone has height 88 meters and...
A tank in the shape of an inverted right circular cone has height 88 meters and radius 1616 meters. It is filled with 22 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. Note: the density of hot chocolate is δ=1450kg/m3
A tank in the shape of an inverted right circular cone has height 9 meters and...
A tank in the shape of an inverted right circular cone has height 9 meters and radius 13 meters. It is filled with 3 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. Note: the density of hot chocolate is δ=1480kg/m^3
A water tank has the shape of an inverted cone with a height of 6 meters...
A water tank has the shape of an inverted cone with a height of 6 meters and a radius of 4 meters. The tank is not completely full; at its deepest point, the water is 5 meters deep. How much work is required to pump out the water? Assume the water is pumped out to the level of the top of the tank.
A tank in the shape of an inverted right circular cone has height 6 meters and...
A tank in the shape of an inverted right circular cone has height 6 meters and radius 2 meters. It is filled with 5 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is \delta = 1090kg/m^3 Your answer must include the correct units.
A tank in the shape of an inverted right circular cone has height 7 meters and...
A tank in the shape of an inverted right circular cone has height 7 meters and radius 3 meters. It is filled with 6 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is δ=1080 kg/m^3. Your answer must include the correct units.
A tank in the shape of an inverted right circular cone has height 7 meters and...
A tank in the shape of an inverted right circular cone has height 7 meters and radius 3 meters. It is filled with 6 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is δ=1080 kg/m^3. Your answer must include the correct units. NOTE: 112174.092J is incorrect?
A tank in shape of an inverted right circular cone has height 10 m and radius...
A tank in shape of an inverted right circular cone has height 10 m and radius 10 m. it is filled with 7 m of hot chocolate. Find the work required to empty the tank by bumping the hot chocolate over the top. density of chocolate equal 1510kg/m^3
A tank in the shape of an inverted cone 12 feet tall and 2 feet in...
A tank in the shape of an inverted cone 12 feet tall and 2 feet in radius is full of water. Calculate the work W required to pump all the water to a height of 1 foot above the tank.
Consider the following container. It is a cut cone with a top radius of 7 ft...
Consider the following container. It is a cut cone with a top radius of 7 ft and a bottom radius of 3 ft. It has a height of 12 ft and water (density 62.5 lb/ft^3) is currently in the container to a depth of 5 ft. There is a spout on this container at the top. Write down but DO NOT EVALUATE an integral to find the work necessary to pump all the water in this container up out of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT