Find the maximum and minimum values of the function g(θ)=5θ−6sin(θ) on the interval [0,π]
Minimum Value =
Maximum Value=
Given g(θ) = 5θ - 6sin(θ)
differentiate with respect to θ, we get
dg/dθ =5 - 6cos(θ)
for critical points dg/dθ=0
==>5-6cosθ=0
==>cosθ=5/6
==>θ=cos-1(5/6)
Also g(0) = 5*0 - 6sin(0) =0
g(pi/2) = 5*(pi/2) - 6sin(pi/2) =5*(pi/2) - 6 = 1.854
g(cos-1(5/6)) = 5*(cos-1(5/6)) - 6*sin(cos-1(5/6)) =-0.388
maximum value = 1.854
minimum value = -0.388
Get Answers For Free
Most questions answered within 1 hours.