Question

Evaluate the flux integral ∫ ∫ S F · n dS. F = 〈8, 0, z〉,...

Evaluate the flux integral ∫ ∫ S F · n dS. F = 〈8, 0, z〉, S is the boundary of the region bounded above by z = 25 − x2 − y2 and below by z = 1 (n outward). Enter an exact answer. Do not use decimal approximations.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector...
Evaluate the surface integral Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x i + y j + 9 k S is the boundary of the region enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and x + y =...
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2 i + y2 j + z2 k S is the boundary of the solid half-cylinder 0 ≤ z ≤ 25 − y2 , 0 ≤ x ≤ 3
Use the divergence theorem to find the outward flux ∫ ∫ S F · n dS  ...
Use the divergence theorem to find the outward flux ∫ ∫ S F · n dS   of the vector field F  =   cos(10y + 5z) i  +  9 ln(x2 + 10z) j  +  3z2 k,  where S is the surface of the region bounded within by the graphs of  z  =  √ 25 − x2 − y2  ,  x2 + y2  =  7,  and  z  =  0. Please explain steps. Thank you :)
Use the divergence theorem to find the outward flux (F · n) dS S of the...
Use the divergence theorem to find the outward flux (F · n) dS S of the given vector field F. F = y2i + xz3j + (z − 1)2k; D the region bounded by the cylinder x2 + y2 = 25 and the planes z = 1, z = 6
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = x2i + y2j + z2k S is the boundary of the solid half-cylinder0 ≤ z ≤ 16 − y2 , 0 ≤ x ≤ 5
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 4 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 6 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and has...
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 6 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and...
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 2 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT