Question

1.) Let f ( x , y , z ) = x ^3 + y +...

1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0)

2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^ 2 + sin( x + y ) * cos( x + z ). Determine the line integral of f ( x , y , z ) with respect to arc length over the curve r ( t ) = ( cos ( 2 π t ) , sin ( 2 π t ) , t ) where t ranges from 0 to 1

Homework Answers

Answer #1

A thumbs up is appreciated.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.) Let f(x,y) =x^2+y^3+sin(x^2+y^3). Determine the line integral of f(x,y) with respect to arc length over...
1.) Let f(x,y) =x^2+y^3+sin(x^2+y^3). Determine the line integral of f(x,y) with respect to arc length over the unit circle centered at the origin (0, 0). 2.) Let f ( x,y)=x^3+y+cos( x )+e^(x − y). Determine the line integral of f(x,y) with respect to arc length over the line segment from (-1, 0) to (1, -2)
Let f ( x , y ) = x ^3 + y + cos ⁡ (...
Let f ( x , y ) = x ^3 + y + cos ⁡ ( x ) + e^(x − y). Determine the line integral of f ( x , y ) with respect to arc length over the line segment from (-1, 0) to (1, -2)
Compute the line integral with respect to arc length of the function f(x, y, z) =...
Compute the line integral with respect to arc length of the function f(x, y, z) = xy2 along the parametrized curve that is the line segment from (1, 1, 1) to (2, 2, 2) followed by the line segment from (2, 2, 2) to (−9, 6, 3).
Compute the line integral with respect to arc length of the function f(x, y, z) =...
Compute the line integral with respect to arc length of the function f(x, y, z) = xy^2 along the parametrized curve that is the line segment from (1, 1, 1) to (2, 2, 2) followed by the line segment from (2, 2, 2) to (−3, 6, 8).
Compute the line integral with respect to arc length of the function f(x, y, z) =...
Compute the line integral with respect to arc length of the function f(x, y, z) = xy2 along the parametrized curve that is the line segment from (1, 1, 1) to (2, 2, 2) followed by the line segment from (2, 2, 2) to (−6, 6, 1).
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Let F ( x , y ) = 〈 e^x + y^2 − 3 , −...
Let F ( x , y ) = 〈 e^x + y^2 − 3 , − e ^(− y) + 2 x y + 4 y 〉. a) Determine if F ( x , y ) is a conservative vector field and, if so, find a potential function for it. b) Calculate ∫ C F ⋅ d r where C is the curve parameterized by r ( t ) = 〈 2 t , 4 t + sin ⁡ π...
Let F ( x , y , z ) =< e^z sin( y ) + 3x...
Let F ( x , y , z ) =< e^z sin( y ) + 3x , e^x cos( z ) + 4y , cos( x y ) + 5z >, and let S1 be the sphere x^2 + y^2 + z^2 = 4 oriented outwards Find the flux integral ∬ S1 (F) * dS. You may with to use the Divergence Theorem.
Let F (x, y) = 2xyi + (x – 2y)j, r (t) = sin ti –...
Let F (x, y) = 2xyi + (x – 2y)j, r (t) = sin ti – 2 cos t j, 0 ≤ t ≤ π. Then C F•dr is
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x,...
For each vector field F~ (x, y) = hP(x, y), Q(x, y)i, find a function f(x, y) such that F~ (x, y) = ∇f(x, y) = h ∂f ∂x , ∂f ∂y i by integrating P and Q with respect to the appropriate variables and combining answers. Then use that potential function to directly calculate the given line integral (via the Fundamental Theorem of Line Integrals): a) F~ 1(x, y) = hx 2 , y2 i Z C F~ 1...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT