Question

Given that the matrix [[-3,-7,-2,0],[3,0,-6,0],[1,7,-2,0]] is the augmented matrix for a linear system, use technology to...

Given that the matrix

[[-3,-7,-2,0],[3,0,-6,0],[1,7,-2,0]]

is the augmented matrix for a linear system, use technology to perform the row operations needed to transform the matrix to reduced echelon form. Then determine if the system is consistent and if it is, find all solutions to the system.

Reduced echelon form:

Is the system consistent?  select yes no

Solution: (x1,x2,x3)=

Homework Answers

Answer #1

for this rows, augmented matrix is

-3 -7 -2 0
3 0 -6 0
1 7 -2 0

convert into Reduced Row Eschelon Form...

Divide row1 by -3

1 7/3 2/3 0
3 0 -6 0
1 7 -2 0


Add (-3 * row1) to row2

1 7/3 2/3 0
0 -7 -8 0
1 7 -2 0


Add (-1 * row1) to row3

1 7/3 2/3 0
0 -7 -8 0
0 14/3 -8/3 0


Divide row2 by -7

1 7/3 2/3 0
0 1 8/7 0
0 14/3 -8/3 0


Add (-14/3 * row2) to row3

1 7/3 2/3 0
0 1 8/7 0
0 0 -8 0


Divide row3 by -8

1 7/3 2/3 0
0 1 8/7 0
0 0 1 0


Add (-8/7 * row3) to row2

1 7/3 2/3 0
0 1 0 0
0 0 1 0


Add (-2/3 * row3) to row1

1 7/3 0 0
0 1 0 0
0 0 1 0


Add (-7/3 * row2) to row1

1 0 0 0
0 1 0 0
0 0 1 0

here for every column there is one pivot entry so system is consistent

so unique solution is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a system of linear equations with augmented matrix A and coefficient matrix C. In each...
Consider a system of linear equations with augmented matrix A and coefficient matrix C. In each case either prove the statement or give an example showing that it is false. • If there is more than one solution, A has a row of zeros. • If A has a row of zeros, there is more than one solution. • If there is no solution, the row-echelon form of C has a row of zeros. • If the row-echelon form of...
Solve the system -2x1+4x2+5x3=-22 -4x1+4x2-3x3=-28 4x1-4x2+3x3=30 a)the initial matrix is: b)First, perform the Row Operation 1/-2R1->R1....
Solve the system -2x1+4x2+5x3=-22 -4x1+4x2-3x3=-28 4x1-4x2+3x3=30 a)the initial matrix is: b)First, perform the Row Operation 1/-2R1->R1. The resulting matrix is: c)Next perform operations +4R1+R2->R2 -4R1+R3->R3 The resulting matrix is: d) Finish simplyfying the augmented mantrix down to reduced row echelon form. The reduced matrix is: e) How many solutions does the system have? f) What are the solutions to the system? x1 = x2 = x3 =
Solve the following systems by forming the augmented matrix and reducing to reduced row echelon form....
Solve the following systems by forming the augmented matrix and reducing to reduced row echelon form. In each case decide whether the system has a unique solution, infinitely many solutions or no solution. Show pivots in squares. Describe the solution set. -3x1+x2-x3=10 x2+4X3=12 -3x1+2x2+3x3=11
Solve the following system of linear equations: 3x2−9x3 = −3 x1−2x2+x3 = 2 x2−3x3 = 0...
Solve the following system of linear equations: 3x2−9x3 = −3 x1−2x2+x3 = 2 x2−3x3 = 0 If the system has no solution, demonstrate this by giving a row-echelon form of the augmented matrix for the system. If the system has infinitely many solutions, your answer may use expressions involving the parameters r, s, and t. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
Consider the system of linear equations 2x+y-3z=-7 x+y-z=-1 4x+3y-5z=-9 (a)Represent this system as a matrix A...
Consider the system of linear equations 2x+y-3z=-7 x+y-z=-1 4x+3y-5z=-9 (a)Represent this system as a matrix A (b)Use row operations to transform A into row echelon form Use your answer to (b) to find all non-integer solutions of the system
The augmented matrix below represents a system of linear equations associated with a real world prob-...
The augmented matrix below represents a system of linear equations associated with a real world prob- lem. The augmented matrix has already been completely row reduced. 1 0 6 12  0 1 −2 0  0000 (a) Use the reduced matrix to write down the parametric solution for the system as a point (x, y, z).    (b) Assuming that x, y, and z represent the number of whole items, determine how many “actual” solutions this system has, and...
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 −...
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 − 10x5 = −11 x1+2x2 − x3+3x5 = 4 1. Represent the system as an augmented matrix. 2. Reduce the matrix to row reduced echelon form. (This can be accomplished by hand or by MATLAB. No need to post code.) 3. Write the set of solutions as a linear combination of vectors in R5. (This must be accomplished by hand using the rref form found...
2X1-X2+X3+7X4=0 -1X1-2X2-3X3-11X4=0 -1X1+4X2+3X3+7X4=0 a. Find the reduced row - echelon form of the coefficient matrix b....
2X1-X2+X3+7X4=0 -1X1-2X2-3X3-11X4=0 -1X1+4X2+3X3+7X4=0 a. Find the reduced row - echelon form of the coefficient matrix b. State the solutions for variables X1,X2,X3,X4 (including parameters s and t) c. Find two solution vectors u and v such that the solution space is \ a set of all linear combinations of the form su + tv.
3) For the given system of equations: x+y-z=-6 x+2y+3z=-10 2x-y-13z=3 Rewrite the system as an augmented...
3) For the given system of equations: x+y-z=-6 x+2y+3z=-10 2x-y-13z=3 Rewrite the system as an augmented matrix. [4 pt] Find the reduced row echelon form of the matrix using your calculator, and write it in the spacebelow. [4 pt] State the solution(s) of the system of equations. [3 pt]
A system of linear equations is said to be homogeneous if the constants on the right-hand...
A system of linear equations is said to be homogeneous if the constants on the right-hand side are all zero. The system 2x1 − x2 + x3 + x4 = 0 5x1 + 2x2 − x3 − x4 = 0 −x1 + 3x2 + 2x3 + x4 = 0 is an example of a homogeneous system. Homogeneous systems always have at least one solution, namely the tuple consisting of all zeros: (0, 0, . . . , 0). This solution...