Question

A rancher with 1000 feet of fencing wants to enclose a rectangular area and then divide...

A rancher with 1000 feet of fencing wants to enclose a rectangular area and then divide it into three pens with fencing parallel to one side of the rectangle as indicated below. If x represents the length of the common fence, find a function that models the total area of the three pens in terms of x. (Your answer will be a function or expression.)

Homework Answers

Answer #1

We are given

x represents the length of the common fence

Let's assume

width of rectangle =y

fencing wants to enclose a rectangular area and then divide it into three pens with fencing parallel to one side of the rectangle

so, we can set up fencing equation as

now, we can solve for y

now, we can find area of all three pens

we can plug back y

...........Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A javalina rancher wants to enclose a rectangular area and then divide it into 6 pens...
A javalina rancher wants to enclose a rectangular area and then divide it into 6 pens with fencing parallel to one side of the rectangle. There are 660 feet of fencing available to complete the job. What is the largest possible total area of the 6 pens?
Consider the following problem: A farmer with 650 ft of fencing wants to enclose a rectangular...
Consider the following problem: A farmer with 650 ft of fencing wants to enclose a rectangular area and then divide it into four pens with fencing parallel to one side of the rectangle. What is the largest possible total area of the four pens? (a) Draw a diagram illustrating the general situation. Let x denote the length of each of two sides and three dividers. Let y denote the length of the other two sides. (b) Write an expression for...
(1 point) A rancher wants to fence in an area of 1000000 square feet in a...
(1 point) A rancher wants to fence in an area of 1000000 square feet in a rectangular field and then divide it in half with a fence down the middle, parallel to one side. What is the shortest length of fence that the rancher can use? Length of fence = feet.
A rancher wants to fence in an area of 2000000 square feet in a rectangular field...
A rancher wants to fence in an area of 2000000 square feet in a rectangular field and then divide it in half with a fence down the middle parallel to one side. Suppose that that the fence for the outer part of the rectangle costs $7 per foot, while the cost of the “dividing” fence down the middle costs $4 per foot. What is the least amount of money the rancher can spend on the fence, and what dimensions for...
A farmer wants to enclose a rectangular field by a fence and divide it into 2...
A farmer wants to enclose a rectangular field by a fence and divide it into 2 smaller but equal rectangular fields by constructing another fence parallel to one side. He has 6,000 yards of fencing.(a) draw picture (b) Find the dimensions of the field so that the total area is a maximum. (c)  Find the dimensions of the rectangular field the farmer can make the will contain the largest area.
A farmer has 420 feet of fencing to enclose 2 adjacent rectangular pig pens sharing a...
A farmer has 420 feet of fencing to enclose 2 adjacent rectangular pig pens sharing a common side. What dimensions should be used for each pig pen so that the enclosed area will be a maximum? The two adjacent pens have the same dimensions. Find the absolute maximum value of f(x)= x4−2x
A farmer is building a fence to enclose a rectangular area against an existing wall, shown...
A farmer is building a fence to enclose a rectangular area against an existing wall, shown in the figure below. A rectangle labeled, Fenced in Region, is adjacent to a rectangle representing a wall. Three of the sides will require fencing and the fourth wall already exists. If the farmer has 184 feet of fencing, what is the largest area the farmer can enclose?
A fence is to be built to enclose a rectangular area of 800 square feet. The...
A fence is to be built to enclose a rectangular area of 800 square feet. The fence along three sides is to be made of material that costs $6 per foot. The material for the fourth side costs $18 per foot. Find the dimensions of the rectangle that will allow for the most economical fence to be built?
A fence is to be built to enclose a rectangular area of 18001800 square feet. The...
A fence is to be built to enclose a rectangular area of 18001800 square feet. The fence along three sides is to be made of material that costs ​$44 per foot. The material for the fourth side costs ​$1212 per foot. Find the dimensions of the rectangle that will allow for the most economical fence to be built.
A farmer wants to fence in and area of 1.5 million square feet in a rectangular...
A farmer wants to fence in and area of 1.5 million square feet in a rectangular field. He then divides the area in half by putting another line of fencing parallel to one of the sides of the rectangle in the interior of the area. What is the dimensions of the rectanglular area that minimizes the amount of fencing used. Let x denote the length of fencing (in million of ft) along the direction where 3 pieces of fencing is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT