Question

Consider the following function. H(x, y)  =  ln(5x^2 + 8y^2) (a) Find  fxx(2,3) . (b) Find  ...

Consider the following function. H(x, y)  =  ln(5x^2 + 8y^2)

(a) Find  fxx(2,3) .

(b) Find  fyy(2,3) .

(c) Find  fxy(2,3) .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
fxx, fxy, fyx, and fyy f(x, y) = y (ln x)
fxx, fxy, fyx, and fyy f(x, y) = y (ln x)
​Suppose that the function f(x, y) has continuous partial derivatives fxx, fyy, and fxy at all...
​Suppose that the function f(x, y) has continuous partial derivatives fxx, fyy, and fxy at all points (x,y) near a critical points (a, b). Let D(x,y) = fxx(x, y)fyy(x,y) – (fxy(x,y))2 and suppose that D(a,b) > 0. ​(a) Show that fxx(a,b) < 0 if and only if fyy(a,b) < 0. ​(b) Show that fxx(a,b) > 0 if and only if fyy(a,b) > 0.
Find fxx(x,y), fxy(x,y), fyx(x,y), and fyy(x,y) for the function f f(x,y)= 8xe3xy
Find fxx(x,y), fxy(x,y), fyx(x,y), and fyy(x,y) for the function f f(x,y)= 8xe3xy
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)
. For the function x,y=xarctan(xy) , compute fx , fy , fxx , fyy , and...
. For the function x,y=xarctan(xy) , compute fx , fy , fxx , fyy , and fxy
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy...
Let f(x, y) = 2x^3y^2 + 3xy^3 4x^3 y. Find (a) fx (c) fxx (b) fy (d) fyy (e) fxy (f) fyx
Consider the function f(x,y) = xe^((x^2)-(y^2)) (a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find...
Consider the function f(x,y) = xe^((x^2)-(y^2)) (a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find a linear approximation for f (1.1, −0.9). (b) Find fxx(1, −1), fxy(1, −1), fyy(1, −1). Use these values to find a quadratic approximation for f(1.1,−0.9).
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the...
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the partial derivatives of the function f(x,y)=x^6y^6/x^2+y^2 fx(x,y)= fy(x,y)= part 3) Find all first- and second-order partial derivatives of the function f(x,y)=2x^2y^2−2x^2+5y fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 4) Find all first- and second-order partial derivatives of the function f(x,y)=9ye^(3x) fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 5) For the function given below, find the numbers (x,y) such that fx(x,y)=0 and fy(x,y)=0 f(x,y)=6x^2+23y^2+23xy+4x−2 Answer: x= and...
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B....
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B. ∂f∂y=fy=∂f∂y=fy= C. ∂2f∂x2=fxx=∂2f∂x2=fxx= D. ∂2f∂y2=fyy=∂2f∂y2=fyy= E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx= F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=
Consider the following function. f (x, y)  =  [(y + 2) ln x] − xe7y −...
Consider the following function. f (x, y)  =  [(y + 2) ln x] − xe7y − x(y − 5)7 (a) Find  fx(1, 0) . (b) Find  fy(1, 0) .