Question

A population of values has a normal distribution with ?=64.8 and ?=44.8. You intend to draw...

A population of values has a normal distribution with ?=64.8 and ?=44.8. You intend to draw a random sample of size n=15.

Find the probability that a single randomly selected value is greater than 76.4.
P(X > 76.4) =

Find the probability that a sample of size n=15 is randomly selected with a mean greater than 76.4.
P(M > 76.4) =

Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Homework Answers

Answer #1

Z =X--MEAN/S.D.

Z=76.4-64.8 /44.8=11.6/44.8 =0.2589

Now Z =0.2589,it simply means that X value is greater than 1.2589 times mean

mean here is 64.8 so X=1.258964.8 ,X=81.57672

Now we have to find the probability(X greater than 76.4 or Z reater than 81.5767)

use z table for n=15 to find the rquired probaility

B)Mean greater than 76.4 means

Z=76.4-X/44.8 OR

Z=76.4-76.4/44.8 ,z=0

WE HAVE TO FIND PEOBABILITY WHEN Z LESS THAN ZERO(MEANS NEAGETIVE)

use table for n=15 and Z is less than zero ,probability is find

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A population of values has a normal distribution with μ=37.2μ=37.2 and σ=76.2σ=76.2. You intend to draw...
A population of values has a normal distribution with μ=37.2μ=37.2 and σ=76.2σ=76.2. You intend to draw a random sample of size n=21n=21. Find the probability that a single randomly selected value is greater than 27.2. P(X > 27.2) = Find the probability that a sample of size n=21n=21 is randomly selected with a mean greater than 27.2. P(M > 27.2) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ=240μ=240 and σ=77.2σ=77.2. You intend to draw...
A population of values has a normal distribution with μ=240μ=240 and σ=77.2σ=77.2. You intend to draw a random sample of size n=214n=214. Find the probability that a single randomly selected value is greater than 239.5. P(X > 239.5) = Find the probability that a sample of size n=214n=214 is randomly selected with a mean greater than 239.5. P(M > 239.5) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw...
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw a random sample of size n=13. Find the probability that a single randomly selected value is less than -1.7. P(X < -1.7) = Find the probability that a sample of size n=13 is randomly selected with a mean less than -1.7. P(M < -1.7) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ=113.2μ=113.2 and σ=67σ=67. You intend to draw...
A population of values has a normal distribution with μ=113.2μ=113.2 and σ=67σ=67. You intend to draw a random sample of size n=218n=218. Find the probability that a single randomly selected value is between 100 and 125. P(100 < X < 125) = Find the probability that a sample of size n=218n=218 is randomly selected with a mean between 100 and 125. P(100 < M < 125) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using...
A population of values has a normal distribution with μ=5.8μ=5.8 and σ=17σ=17. You intend to draw...
A population of values has a normal distribution with μ=5.8μ=5.8 and σ=17σ=17. You intend to draw a random sample of size n=225n=225. Find the probability that a single randomly selected value is less than 9. P(X < 9) = Find the probability that a sample of size n=225n=225 is randomly selected with a mean less than 9. P(M < 9) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ=55.3 and σ=14.9. You intend to draw...
A population of values has a normal distribution with μ=55.3 and σ=14.9. You intend to draw a random sample of size n=97. Find the probability that a single randomly selected value is between 58.9 and 59.7. P(58.9 < X < 59.7) = Incorrect Find the probability that a sample of size n=97 is randomly selected with a mean between 58.9 and 59.7. P(58.9 < M < 59.7) = Incorrect Enter your answers as numbers accurate to 4 decimal places. Answers...
A population of values has a normal distribution with μ=180.3μ=180.3 and σ=46σ=46. You intend to draw...
A population of values has a normal distribution with μ=180.3μ=180.3 and σ=46σ=46. You intend to draw a random sample of size n=174n=174. Find the probability that a sample of size n=174n=174 is randomly selected with a mean less than 173.3. P(M < 173.3) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A population of values has a normal distribution with μ=116.7μ=116.7 and σ=73.3σ=73.3. You intend to draw...
A population of values has a normal distribution with μ=116.7μ=116.7 and σ=73.3σ=73.3. You intend to draw a random sample of size n=62n=62. Find the probability that a single randomly selected value is between 129.7 and 145.6. P(129.7 < X < 145.6) = Find the probability that a sample of size n=62n=62 is randomly selected with a mean between 129.7 and 145.6. P(129.7 < M < 145.6) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using...
A population of values has a normal distribution with μ=170μ=170 and σ=58σ=58. You intend to draw...
A population of values has a normal distribution with μ=170μ=170 and σ=58σ=58. You intend to draw a random sample of size n=129n=129. Find the probability that a single randomly selected value is between 156.7 and 157.2. P(156.7 < X < 157.2) = Find the probability that a sample of size n=129n=129 is randomly selected with a mean between 156.7 and 157.2. P(156.7 < M < 157.2) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using...
A population of values has a normal distribution with μ = 8.2 and σ = 30.2...
A population of values has a normal distribution with μ = 8.2 and σ = 30.2 . You intend to draw a random sample of size n = 28 . Find the probability that a single randomly selected value is greater than -0.9. P(X > -0.9) = Find the probability that a sample of size n = 28 is randomly selected with a mean greater than -0.9. P(M > -0.9) = Enter your answers as numbers accurate to 4 decimal...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT