Question

show that the group of units of (Z/2Z) is elementary abelian 2-group.

show that the group of units of (Z/2Z) is elementary abelian 2-group.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
elementary linear algebra Solve the system. x+y+z=1 x+y-2z=3 2x+y+z=2
elementary linear algebra Solve the system. x+y+z=1 x+y-2z=3 2x+y+z=2
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
Show that a group of order 5 is abelian.
Show that a group of order 5 is abelian.
Prove directly that the group 2Z = {2k | k ∈ Z} and the group 5Z...
Prove directly that the group 2Z = {2k | k ∈ Z} and the group 5Z = {5k | k ∈ Z} are isomorphic.
is it cyclic? Consider the abelian group (Z,∗) under the operation a ∗ b = a...
is it cyclic? Consider the abelian group (Z,∗) under the operation a ∗ b = a + b − 1 for all a, b ∈ Z.
Let G be an abelian group and S ≤ G. Show that S ⊲ G and...
Let G be an abelian group and S ≤ G. Show that S ⊲ G and that G/S is abelian I need an explanation with some details
Group Theory Question: Show that if a finite group G with 6 elements is not abelian,...
Group Theory Question: Show that if a finite group G with 6 elements is not abelian, then it must be the group of symmetries of an equilateral triangle. Can one have a similar statement for a finite group G of eight elements?
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Show that Z/2Z × Z/nZ is cyclic if and only if n is even. Abstract Algebra
Show that Z/2Z × Z/nZ is cyclic if and only if n is even. Abstract Algebra
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G...
Let G be an Abelian group. Let k ∈ Z be nonzero. Define φ : G → G by φ(x) = x^ k . (a) Prove that φ is a group homomorphism. (b) Assume that G is finite and |G| is relatively prime to k. Prove that Ker φ = {e}.