Question

Consider the matrix A =   2 −2 2 0 1 −2 1 −2 3...

Consider the matrix A =  

2 −2 2

0 1 −2

1 −2 3

  . • What is the rank of A? Give a basis for the range R(A). • What is the dimension of the null space N (A)? Give a basis for the null space. • What is the dimension of N (AT)? Give a basis for the range R(AT).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find a basis for the null space of a matrix A. 2 2 0 2 1...
Find a basis for the null space of a matrix A. 2 2 0 2 1 -1 2 3 0 Give the rank and nullity of A.
#2. For the matrix A =   1 2 1 2 3 7 4 7...
#2. For the matrix A =   1 2 1 2 3 7 4 7 9   find the following. (a) The null space N (A) and a basis for N (A). (b) The range space R(AT ) and a basis for R(AT ) . #3. Consider the vectors −→x =   k − 6 2k 1   and −→y =   2k 3 4  . Find the number k such that the vectors...
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix  ...
asasap Consider the Markov chain with state space {1, 2, 3} and transition matrix   1 2 1 4 1 4 0 1 0 1 4 0 3 4   Find the periodicity of the states. \ Let {Xn|n ≥ 0} be a finite state Markov chain. prove or disprove that all states are positive recurren
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1 ≤ i, j ≤ n) and having the following interesting property: ai1 + ai2 + ..... + ain = 0 for each i = 1, 2, ...., n Based on this information, prove that rank(A) < n. b) Let A ∈ R m×n be a matrix of rank r. Suppose there are right hand sides b for which Ax = b has no solution,...
Let A be a matrix of size (112×105). If the rank of A is 58, then...
Let A be a matrix of size (112×105). If the rank of A is 58, then the dimension of the null space of AT is:
Find bases for the four fundamental subspaces of the matrix A [ 1 0 0 ]...
Find bases for the four fundamental subspaces of the matrix A [ 1 0 0 ] 0 1 1   1 1 1 [ 1 8 8 ] find N(A) basis ______________ N(AT) = __________ R(A) basis = ___________ R(AT) = ______________
. Given the matrix A = 1 1 3 -2 2 5 4 3 −1 2...
. Given the matrix A = 1 1 3 -2 2 5 4 3 −1 2 1 3 (a) Find a basis for the row space of A (b) Find a basis for the column space of A (c) Find the nullity of A
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B ....
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B . (a) What are the possible dimensions of the null space of AB? Justify your answer. (b) What are the possible dimensions of the range of AB Justify your answer. (c) Can the linear transformation define by A be one to one? Justify your answer. (d) Can the linear transformation define by B be onto? Justify your answer.
Let V be the subspace of all vectors in R 5 , such that x1 −...
Let V be the subspace of all vectors in R 5 , such that x1 − x4 = x2 − 5x5 = 3x3 + x4 (a) Find a matrix A with that space as its Null space; What is the rank of A? b) Find a basis B1 of V ; What is the dimension of V ? (c) Find a matrix D with V as its column space. What is the rank of D? To find the rank of...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2   ...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2    -6 6    -4 Find all x in R^4 that are mapped into the zero vector by the transformation Bx. Does the vector: 1 0 2 belong to the range of T? If it does, what is the pre-image of this vector?