Question

Give augmented matrix for this system. Find all solutions to this system. Indicate all parameters. x1-x2+x3+x4=1...

Give augmented matrix for this system. Find all solutions to this system. Indicate all parameters.

x1-x2+x3+x4=1

2x2+3x3+4x4=2

x1-x2+2x3+3x4=3

x1=? x2=? x3=? x4=?

Homework Answers

Answer #1

system is

augmented matrix is

1 -1 1 1 1
0 2 3 4 2
1 -1 2 3 3

convert into Reduced Row Eschelon Form...

Add (-1 * row1) to row3

1 -1 1 1 1
0 2 3 4 2
0 0 1 2 2


Divide row2 by 2

1 -1 1 1 1
0 1 3/2 2 1
0 0 1 2 2


Add (-3/2 * row3) to row2

1 -1 1 1 1
0 1 0 -1 -2
0 0 1 2 2


Add (-1 * row3) to row1

1 -1 0 -1 -1
0 1 0 -1 -2
0 0 1 2 2


Add (1 * row2) to row1

1 0 0 -2 -3
0 1 0 -1 -2
0 0 1 2 2

reduced system is

general solution is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Linear Algebra find all the solutions of the linear system using Gaussian Elimination x1-x2+3x3+2x4=1 -x1+x2-2x3+x4=-2 2x1-2x2+7x3+7x4=1
Linear Algebra find all the solutions of the linear system using Gaussian Elimination x1-x2+3x3+2x4=1 -x1+x2-2x3+x4=-2 2x1-2x2+7x3+7x4=1
Find the number of solutions to x1+x2+x3+x4=16 with integers x1 ,x2, x3, x4 satisfying (a)  xj ≥...
Find the number of solutions to x1+x2+x3+x4=16 with integers x1 ,x2, x3, x4 satisfying (a)  xj ≥ 0, j = 1, 2, 3, 4; (b) x1 ≥ 2, x2 ≥ 3, x3 ≥ −3, and x4 ≥ 1; (c) 0 ≤ xj ≤ 6, j = 1, 2, 3, 4
x1-5x2+x3+3x4=1 2x1-x2-3x3-x4=3 -3x1-3x3+7x3+5x4=k 1 ) There is exactly one real number k for which the system...
x1-5x2+x3+3x4=1 2x1-x2-3x3-x4=3 -3x1-3x3+7x3+5x4=k 1 ) There is exactly one real number k for which the system has at least one solution; determine this k and describe all solutions to the resulting system. 2 ) Do the solutions you found in the previous part form a linear subspace of R4? 3 ) Recall that a least squares solution to the system of equations Ax = b is a vector x minimizing the length |Ax=b| suppose that {x1,x2,x3,x4} = {2,1,1,1} is a...
Find the standard matrix for the following transformation T : R 4 → R 3 :...
Find the standard matrix for the following transformation T : R 4 → R 3 : T(x1, x2, x3, x4) = (x1 − x2 + x3 − 3x4, x1 − x2 + 2x3 + 4x4, 2x1 − 2x2 + x3 + 5x4) (a) Compute T(~e1), T(~e2), T(~e3), and T(~e4). (b) Find an equation in vector form for the set of vectors ~x ∈ R 4 such that T(~x) = (−1, −4, 1). (c) What is the range of T?
2. Find the number of integer solutions to x1 + x2 + x3 + x4 +...
2. Find the number of integer solutions to x1 + x2 + x3 + x4 + x5 = 50, x1 ≥ −3, x2 ≥ 0, x3 ≥ 4, x4 ≥ 2, x5 ≥ 12.
Solve the following system of linear equations: 3x2−9x3 = −3 x1−2x2+x3 = 2 x2−3x3 = 0...
Solve the following system of linear equations: 3x2−9x3 = −3 x1−2x2+x3 = 2 x2−3x3 = 0 If the system has no solution, demonstrate this by giving a row-echelon form of the augmented matrix for the system. If the system has infinitely many solutions, your answer may use expressions involving the parameters r, s, and t. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
solve the following linear system by gauss-jordan method   x1 + x2 - 2x3 + x4 =...
solve the following linear system by gauss-jordan method   x1 + x2 - 2x3 + x4 = 8 3x1 - 2x2 - x4 = 3 -x1 + x2 - x3 + x4 = 2 2x1 - x2 + x3 - 2x4 = -3
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 −...
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 − 10x5 = −11 x1+2x2 − x3+3x5 = 4 1. Represent the system as an augmented matrix. 2. Reduce the matrix to row reduced echelon form. (This can be accomplished by hand or by MATLAB. No need to post code.) 3. Write the set of solutions as a linear combination of vectors in R5. (This must be accomplished by hand using the rref form found...
Find the fundamental system of solutions to the system. 2x1 − x2 + 3x3 + 2x4...
Find the fundamental system of solutions to the system. 2x1 − x2 + 3x3 + 2x4 + x5 = 0 x1 + 4x2 − x4 + 3x5 = 0 2x1 + 6x2 − x3 + 5x4 = 0 5x1 + 9x2 + 2x3 + 6x4 + 4x5 = 0.
2X1-X2+X3+7X4=0 -1X1-2X2-3X3-11X4=0 -1X1+4X2+3X3+7X4=0 a. Find the reduced row - echelon form of the coefficient matrix b....
2X1-X2+X3+7X4=0 -1X1-2X2-3X3-11X4=0 -1X1+4X2+3X3+7X4=0 a. Find the reduced row - echelon form of the coefficient matrix b. State the solutions for variables X1,X2,X3,X4 (including parameters s and t) c. Find two solution vectors u and v such that the solution space is \ a set of all linear combinations of the form su + tv.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT