Question

Prove the simple, but extremely useful, result that the perpendicular distance from a point (u, v)...

Prove the simple, but extremely useful, result that the perpendicular distance from a point (u, v) to a line ax + by + c = 0 is given by |au + bv + c| if a 2 + b 2 = 1.

Homework Answers

Answer #1

BY THIS WAY, PROVE EQUATION OF GIVEN PROBLEM.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) If u and v are orthogonal unit vectors, under what condition au+bv is orthogonal to...
1) If u and v are orthogonal unit vectors, under what condition au+bv is orthogonal to cu+dv (where a, b, c, d are scalars)? What are the lengths of those vectors (express them using a, b, c, d)? 2) Given two vectors u and v that are not orthogonal, prove that w=‖u‖2v−uuT v is orthogonal to u, where ‖x‖ is the L^2 norm of x.
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au...
Let u = (1,−3,3,9) and v = (2,1,0,−2). Find scalars a and b so that au + bv = (−3,−5,3,10)
Prove the existence and uniqueness of a perpendicular drawn from a point P to a line...
Prove the existence and uniqueness of a perpendicular drawn from a point P to a line l.
please answer all of them a. Suppose u and v are non-zero, parallel vectors. Which of...
please answer all of them a. Suppose u and v are non-zero, parallel vectors. Which of the following could not possibly be true? a) u • v = |u | |v| b) u + v = 0 c) u × v = |u|2 d) |u| + |v| = 2|u| b. Given points A(3, -4, 2) and B(-12, 16, 12), point P, lying between A and B such that AP= 3/5AB would have coordinates a) P(-27/5, 36/5, 42/5) b) P(-6, 8,...
On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on...
On set R2 define ∼ by writing(a,b)∼(u,v)⇔ 2a−b = 2u−v. Prove that∼is an equivalence relation on R2 In the previous problem: (1) Describe [(1,1)]∼. (That is formulate a statement P(x,y) such that [(1,1)]∼ = {(x,y) ∈ R2 | P(x,y)}.) (2) Describe [(a, b)]∼ for any given point (a, b). (3) Plot sets [(1,1)]∼ and [(0,0)]∼ in R2.
(a) Show that the following algorithm computes the greatest common divisor g of the positive integers...
(a) Show that the following algorithm computes the greatest common divisor g of the positive integers a and b, together with a solution (u, v) in integers to the equation au + bv = gcd(a, b). 1. Set u = 1, g = a, x = 0, and y = b 2. If y = 0, set v = (g − au)/b and return the values (g, u, v) 3. Divide g by y with remainder, g = qy +...
1. Compute the angle between the vectors u = [2, -1, 1] and and v =...
1. Compute the angle between the vectors u = [2, -1, 1] and and v = [1, -2 , -1] 2. Given that : 1. u=[1, -3] and v=[6, 2], are u and v orthogonal? 3. if u=[1, -3] and v=[k2, k] are orthogonal vectors. What is the value(s) of k? 4. Find the distance between u=[root 3, 2, -2] and v=[0, 3, -3] 5. Normalize the vector u=[root 2, -1, -3]. 6. Given that: v1 = [1, - C/7]...
1. Determine whether the lines are parallel, perpendicular or neither. (x-1)/2 = (y+2)/5 = (z-3)/4 and...
1. Determine whether the lines are parallel, perpendicular or neither. (x-1)/2 = (y+2)/5 = (z-3)/4 and (x-2)/4 = (y-1)/3 = (z-2)/6 2. A) Find the line intersection of vector planes given by the equations -2x+3y-z+4=0 and 3x-2y+z=-2 B) Given U = <2, -3, 4> and V= <-1, 3, -2> Find a. U . V b. U x V
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT