Question

M := {(x, y, z) ∈ R3 : x 2 y − 4ze^x+y = −35} is...

M := {(x, y, z) ∈ R3 : x 2 y − 4ze^x+y = −35} is a surface. Find the equation of the tangent plane to M at p = (3, −3, 2).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the surface S in R3 defined implicitly by x**2 y = 4ze**(x+y) − 35 ....
Consider the surface S in R3 defined implicitly by x**2 y = 4ze**(x+y) − 35 . (a) Find the equations of the implicit partial derivatives ∂z ∂x and ∂z ∂y in terms of x, y, z. (b) Find equations of the tangent plane and the norma line to the surface S at the point (3, −3, 2)
Find the equation of the tangent plane to the surface determined by x2y4+z−35=0 at x=3, y=4.
Find the equation of the tangent plane to the surface determined by x2y4+z−35=0 at x=3, y=4.
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Find the equation for the tangent plane to the surface z=(xy)/(y+x) at the point P(1,1,1/2).
Find an equation of the tangent plane to the surface x y 2 + 3 x...
Find an equation of the tangent plane to the surface x y 2 + 3 x − z 2 = 4 at the point ( 2 , 1 , − 2 ) An equation of the tangent plane is
We are given a level surface F ( x , y , z ) = 0...
We are given a level surface F ( x , y , z ) = 0 where F ( x , y , z ) = x^3 - y^2 + z^4 - 20 . Find the equation of the tangent plane to the surface at the point P ( 2 , 2 , 2 ) . Write the final answer in the form a x + b y + c z + d = 0
Find the equation of the tangent plane (in terms of x, y and z) to the...
Find the equation of the tangent plane (in terms of x, y and z) to the surface given by x = u, y = v and z = uv at the point (3, 2, 6).
1. Consider x=h(y,z) as a parametrized surface in the natural way. Write the equation of the...
1. Consider x=h(y,z) as a parametrized surface in the natural way. Write the equation of the tangent plane to the surface at the point (5,3,−4) given that ∂h/∂y(3,−4)=1 and ∂h/∂z(3,−4)=0. 2. Find the equation of the tangent plane to the surface z=0y^2−9x^2 at the point (3,−1,−81). z=?
Find the equation of the tangent plane at the given point. (x^2)(y^2)+z−45=0 at x=2, y=3 z=?
Find the equation of the tangent plane at the given point. (x^2)(y^2)+z−45=0 at x=2, y=3 z=?
Let D be the solid region defined by D = {(x, y, z) ∈ R3; y^2...
Let D be the solid region defined by D = {(x, y, z) ∈ R3; y^2 + z^2 + x^2 <= 1}, and V be the vector field in R3 defined by: V(x, y, z) = (y^2z + 2z^2y)i + (x^3 − 5^z)j + (z^3 + z) k. 1. Find I = (Triple integral) (3z^2 + 1)dxdydz. 2. Calculate double integral V · ndS, where n is pointing outward the border surface of V .
An implicitly defined function of x, y and z is given along with a point P...
An implicitly defined function of x, y and z is given along with a point P that lies on the surface: sin(xy) + cos(yz) = 0, at P = (2, π/12, 4) Use the gradient ∇F to: (a) find the equation of the normal line to the surface at P. (b) find the equation of the plane tangent to the surface at P.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT