Question

Prove that the set S = {(x, y, z) ∈ R 3 : x + y...

Prove that the set S = {(x, y, z) ∈ R 3 : x + y + z = b}. is a subspace of R 3 if and only if b = 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
Consider the following subset: W =(x, y, z) ∈ R^3; z = 2x - y from...
Consider the following subset: W =(x, y, z) ∈ R^3; z = 2x - y from R^3. Of the following statements, only one is true. Which? (1) W is not a subspace of R^3 (2) W is a subspace of R^3 and {(1, 0, 2), (0, 1, −1)} is a base of W (3) W is a subspace of R^3 and {(1, 0, 2), (1, 1, −3)} is a base of W (4) W is a subspace of R^3 and...
Is the set of all x, y, z such x+ 3y + 2z = 0 a...
Is the set of all x, y, z such x+ 3y + 2z = 0 a subspace of R^3 ? If so find a basis for the space.
1)T F: All (x, y, z) ∈ R 3 with x = y + z is...
1)T F: All (x, y, z) ∈ R 3 with x = y + z is a subspace of R 3 9 2) T F: All (x, y, z) ∈ R 3 with x + z = 2018 is a subspace of R 3 3) T F: All 2 × 2 symmetric matrices is a subspace of M22. (Here M22 is the vector space of all 2 × 2 matrices.) 4) T F: All polynomials of degree exactly 3 is...
Prove the following: Theorem. Let R ⊆ X × Y and S ⊆ Y × Z...
Prove the following: Theorem. Let R ⊆ X × Y and S ⊆ Y × Z be relations. Then 1. Range(S ◦ R) ⊆ Range(S), and 2. if Domain(S) ⊆ Range(R), then Range(S ◦ R) = Range(S)
Prove: Let x,y be in R such that x < y. There exists a z in...
Prove: Let x,y be in R such that x < y. There exists a z in R such that x < z < y. Given: Axiom 8.1. For all x,y,z in R: (i) x + y = y + x (ii) (x + y) + z = x + (y + z) (iii) x*(y + z) = x*y + x*z (iv) x*y = y*x (v) (x*y)*z = x*(y*z) Axiom 8.2. There exists a real number 0 such that for all...
5. Prove or disprove the following statements: (a) Let R be a relation on the set...
5. Prove or disprove the following statements: (a) Let R be a relation on the set Z of integers such that xRy if and only if xy ≥ 1. Then, R is irreflexive. (b) Let R be a relation on the set Z of integers such that xRy if and only if x = y + 1 or x = y − 1. Then, R is irreflexive. (c) Let R and S be reflexive relations on a set A. Then,...
1. Consider the relations R = {(x,y),(y,z),(z,x)} and S = {(y,x),(z,y),(x,z)} on {x, y, z}. a)...
1. Consider the relations R = {(x,y),(y,z),(z,x)} and S = {(y,x),(z,y),(x,z)} on {x, y, z}. a) Explain why R is not an equivalence relation. b) Explain why S is not an equivalence relation. c) Find S ◦ R. d) Show that S ◦ R is an equivalence relation. e) What are the equivalence classes of S ◦ R?
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Consider the subspace S = {[x, y, 2x + 3y] | x, y ∈ R} of...
Consider the subspace S = {[x, y, 2x + 3y] | x, y ∈ R} of R 3 . (a) Find a basis of S and dim (S). (b) Extend the basis of S in (a) to a basis of R 3 .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT