Question

prove or disprove : the sum of any two subspace of a vector space is also...

prove or disprove :
the sum of any two subspace of a vector space is also a subspace??

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all...
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all polynomials of degree at most 3 with real coefficients.
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of...
Verify this axiom of a vector space. Vector space: A subspace of R2: the set of all dimension-2 vectors [x; y] whose entries x and y are odd integers. Axiom 1: The sum u + v is in V.
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that...
a)Suppose U is a nonempty subset of the vector space V over field F. Prove that U is a subspace if and only if cv + w ∈ U for any c ∈ F and any v, w ∈ U b)Give an example to show that the union of two subspaces of V is not necessarily a subspace.
Prove that C is a real vector space with the usual sum and scalar multiplication.
Prove that C is a real vector space with the usual sum and scalar multiplication.
How to determine if a vecter space in R3 is a subspace of a vector space...
How to determine if a vecter space in R3 is a subspace of a vector space in R4
Let S be a set in a vector space V and v any vector. Prove that...
Let S be a set in a vector space V and v any vector. Prove that span(S) = span(S ∪ {v}) if and only if v ∈ span(S).
Prove/disprove {F(N*) st. f(k)=0 whenever k>=N} is a subspace of F(N)
Prove/disprove {F(N*) st. f(k)=0 whenever k>=N} is a subspace of F(N)
Let U1, U2 be subspaces of a vector space V. Prove that the union of U1...
Let U1, U2 be subspaces of a vector space V. Prove that the union of U1 and U2 is a subspace if and only if either U1 is a subset of U2 or U2 is a subset of U1.
A vector space V and a subset S are given. Determine if S is a subspace...
A vector space V and a subset S are given. Determine if S is a subspace of V by determining which conditions of the definition of a subspace are satisfied. (Select all that apply.) V = C[−4, 4] and S = P. S contains the zero vector. S is closed under vector addition. S is closed under scalar multiplication. None of these
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT