Question

Solve 6cos2(t)+sin(t)−4=06cos2(t)+sin(t)-4=0 for all solutions 0≤t<2π0≤t<2π

Solve 6cos2(t)+sin(t)−4=06cos2(t)+sin(t)-4=0 for all solutions 0≤t<2π0≤t<2π

Homework Answers

Answer #1

we are given

we can use trig identity

we can multiply both sides by -1

we can solve for t

we can use unit circle

and we get

so, we get

...........Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve 8cos2(x)+2cos(x)−3=08cos2(x)+2cos(x)-3=0 for all solutions 0≤x<2π0≤x<2π and Solve 6sin2(w)−cos(w)−5=06sin2(w)-cos(w)-5=0 for all solutions 0≤w<2π0≤w<2π
Solve 8cos2(x)+2cos(x)−3=08cos2(x)+2cos(x)-3=0 for all solutions 0≤x<2π0≤x<2π and Solve 6sin2(w)−cos(w)−5=06sin2(w)-cos(w)-5=0 for all solutions 0≤w<2π0≤w<2π
1, Solve cos(x)=0.17cos(x)=0.17 on 0≤x<2π0≤x<2π There are two solutions, A and B, with A < B...
1, Solve cos(x)=0.17cos(x)=0.17 on 0≤x<2π0≤x<2π There are two solutions, A and B, with A < B 2, Find the EXACT value of cos(A−B)cos(A-B) if sin A = 3434, cos A = √7474, sin B = √91109110, and cos B = 310310. cos(A−B)cos(A-B) = 3, Find all solutions of the equation 2cosx−1=02cosx-1=0 on 0≤x<2π0≤x<2π The answers are A and B, where A<BA<B A=? B=?
1.Solve 3cos(2α)=3cos2(α)−23cos(2α)=3cos2(α)-2 for all solutions on the interval 0≤α<2π0≤α<2π αα =     Give your answers accurate to...
1.Solve 3cos(2α)=3cos2(α)−23cos(2α)=3cos2(α)-2 for all solutions on the interval 0≤α<2π0≤α<2π αα =     Give your answers accurate to at least 3 decimal places, as a list separated by commas 2.Solve 7sin(2w)−5cos(w)=07sin(2w)-5cos(w)=0 for all solutions on the interval 0≤w<2π0≤w<2π ww =     Give your exact solutions if appropriate, or solutions accurate to at least 3 decimal places, as a list separated by commas 3.Solve 7sin(2β)−2cos(β)=07sin(2β)-2cos(β)=0 for all solutions 0≤β<2π0≤β<2π ββ =     Give exact answers or answers accurate to 3 decimal places, as appropriate 4.Solve...
1.Solve sin(x)=−0.61sin(x)=-0.61 on 0≤x<2π0≤x<2πThere are two solutions, A and B, with A < B 2.Solve 5cos(5x)=25cos(5x)=2...
1.Solve sin(x)=−0.61sin(x)=-0.61 on 0≤x<2π0≤x<2πThere are two solutions, A and B, with A < B 2.Solve 5cos(5x)=25cos(5x)=2 for the smallest three positive solutions.Give your answers accurate to at least two decimal places, as a list separated by commas 3.Solve 5sin(π4x)=35sin(π4x)=3 for the four smallest positive solutions 4.Solve for tt, 0≤t<2π0≤t<2π 21sin(t)cos(t)=9sin(t)21sin(t)cos(t)=9sin(t) 5.Solve for the exact solutions in the interval [0,2π)[0,2π). If the equation has no solutions, respond with DNE. 2sec2(x)=3−tan(x) 6.Give the smallest two solutions of sin(7θθ) = -0.6942 on [...
1.Find all solutions on the interval [0, 2π) csc (2x)-9=0 2. Rewrite in terms of sin(x)...
1.Find all solutions on the interval [0, 2π) csc (2x)-9=0 2. Rewrite in terms of sin(x) and cos(x) Sin (x +11pi/6)
For the following exercises, find all exact solutions on [0, 2π) 23. sec(x)sin(x) − 2sin(x) =...
For the following exercises, find all exact solutions on [0, 2π) 23. sec(x)sin(x) − 2sin(x) = 0 25. 2cos^2 t + cos(t) = 1 31. 8sin^2 (x) + 6sin(x) + 1 = 0 32. 2cos(π/5 θ) = √3
Find all solutions to 2 cos t = 0.35 for 0 ≤ t ≤ 2π Give...
Find all solutions to 2 cos t = 0.35 for 0 ≤ t ≤ 2π Give answers correct to 3 decimal places. Give answers in degrees.
Solve 5cos(2x)=5cos2(x)−15cos(2x)=5cos2(x)-1 for all solutions 0≤ x <2π
Solve 5cos(2x)=5cos2(x)−15cos(2x)=5cos2(x)-1 for all solutions 0≤ x <2π
Consider the ellipse r(t) =〈3 cos(t),4 sin(t)〉, for 0 ≤ t ≤ 2π. (a) At what...
Consider the ellipse r(t) =〈3 cos(t),4 sin(t)〉, for 0 ≤ t ≤ 2π. (a) At what positions does ‖r′(t)‖ have maximum and minimum values, that is, where is a particle moving along the ellipse moving the fastest and slowest? Your answer will be vectors. (b) At what positions does the curvature have maximum and minimum values? Your answer will be vectors.
Find all exact solutions on the interval 0 ≤ x < 2π. (Enter your answers as...
Find all exact solutions on the interval 0 ≤ x < 2π. (Enter your answers as a comma-separated list.) cot(x) + 4 = 5 x=