Question

Estimating Overall change in Position An object moving along a straight line has a velocity function...

Estimating Overall change in Position

An object moving along a straight line has a velocity function v(t) = sint.If the object starts at position 0,determine the total distance traveled and the object’s position at the time t =3π/2
.Sketch the graph to support your answer

(with justification for each step please)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position function of an object moving horizontally along a straight line as a function of...
The position function of an object moving horizontally along a straight line as a function of timeiss(t)=t2 –3t+2,t≥0,wheresisinmetres,andtisinseconds. Determine the velocity of the object when its position is zero. When is the object speeding up? (calculus pls)
The position function of an object moving along a straight line is given by s =...
The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 144 ft/sec, so that its height (in feet) after t sec is given...
Given the following acceleration functions of an object moving along a line, find the position function...
Given the following acceleration functions of an object moving along a line, find the position function with the given initial velocity and position. a(t)=-32; v(0)=24, s(0)=0
At the fifth second, the velocity of an object moving along a horizontal line is -2m/s....
At the fifth second, the velocity of an object moving along a horizontal line is -2m/s. The object’s acceleration function is given by -t^2 +4 Find the velocity of the object at the 8th second of motion.
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18)....
The velocity of a particle moving along a line is a function of time given by  v(t)=81/(t2+9t+18). Find the distance that the particle has traveled after t=9 seconds if it started at t=0 seconds.
Position and Time The position of an object moving in a straight line is given by...
Position and Time The position of an object moving in a straight line is given by x = 5t - 8 t 2 + 6t 3, where x is in meters and t in seconds. (a) What is the position of the object at t = 1s? m What is the position of the object at t = 2?   m What is the position of the object at t = 3? m What is the position of the object at...
An object is moving along a straight line, and the uncertainty in its position is 3.00m....
An object is moving along a straight line, and the uncertainty in its position is 3.00m. (a) find the minimum uncertainty in the momentum of the object. find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass =0.0450 kg) and (c) an electron.
At the fifth second, the velocity of an object moving along a horizontal line is -3m/s...
At the fifth second, the velocity of an object moving along a horizontal line is -3m/s . The object’s acceleration function is given by at=-t2+4. Find the velocity of the object at the 10th second of motion. Find the time when the acceleration is zero. Starting from 3m, W an object moved according to vt=2t-3 .                Find the position of the object at the 20th second of motion.
An object is moving along a straight line, and the uncertainty in its position is 2.80...
An object is moving along a straight line, and the uncertainty in its position is 2.80 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron.
An object is moving along a straight line, and the uncertainty in its position is 3.50...
An object is moving along a straight line, and the uncertainty in its position is 3.50 m. (a) Find the minimum uncertainty in the momentum of the object. Find the minimum uncertainty in the object's velocity, assuming that the object is (b) a golf ball (mass = 0.0450 kg) and (c) an electron.