Given any Cartesian coordinates, (x,y), there are polar
coordinates (?,?)(r,θ) with −?2<?≤?2.−π2<θ≤π2.
Find polar coordinates with...
Given any Cartesian coordinates, (x,y), there are polar
coordinates (?,?)(r,θ) with −?2<?≤?2.−π2<θ≤π2.
Find polar coordinates with −?2<?≤?2−π2<θ≤π2 for the
following Cartesian coordinates:
(a) If (?,?)=(18,−10)(x,y)=(18,−10) then
(?,?)=((r,θ)=( , )),
(b) If (?,?)=(7,8)(x,y)=(7,8) then
(?,?)=((r,θ)=( , )),
(c) If (?,?)=(−10,6)(x,y)=(−10,6) then
(?,?)=((r,θ)=( , )),
(d) If (?,?)=(17,3)(x,y)=(17,3) then
(?,?)=((r,θ)=( , )),
(e) If (?,?)=(−7,−5)(x,y)=(−7,−5) then
(?,?)=((r,θ)=( , )),
(f) If (?,?)=(0,−1)(x,y)=(0,−1) then (?,?)=((r,θ)=( ,))
To write Laplace’s equation, Uxx + Uyy =
0, in polar coordinates, we begin with
Ux...
To write Laplace’s equation, Uxx + Uyy =
0, in polar coordinates, we begin with
Ux = (∂U/∂r)(∂r/∂x) + (∂U/∂θ)(∂θ/∂x)
where r = √(x2+y2), θ = arctan (y/x), x =
r cos θ, y = r sin θ. We get
Ux = (cos θ) Ur – (1/r)(sin θ)
Uθ , Uxx = [∂(Ux)/∂r] (∂r/∂x) +
[∂(Ux)/∂θ](∂θ/∂x)
Carry out this computation, as well as that for Uyy.
Since Uxx and Uyy are both expressed in polar
coordinates, their sum gives Laplace...
The Cartesian coordinates of a point are given.
(a) (−8, 8)
(i) Find polar coordinates...
The Cartesian coordinates of a point are given.
(a) (−8, 8)
(i) Find polar coordinates
(r, θ) of the point, where
r > 0 and 0 ≤ θ < 2π.
(ii) Find polar coordinates
(r, θ) of the point, where
r < 0 and 0 ≤ θ < 2π.
(b) (4,4sqrt(3))
(i) Find polar coordinates
(r, θ) of the point, where
r > 0 and 0 ≤ θ < 2π.
(ii) Find polar coordinates (r, θ)...
The Cartesian coordinates of a point are given. (a) (−3, 3)
(i) Find polar coordinates (r,...
The Cartesian coordinates of a point are given. (a) (−3, 3)
(i) Find polar coordinates (r, θ) of the point, where r > 0
and 0 ≤ θ < 2π.
(r, θ) =
(ii) Find polar coordinates (r, θ) of the point, where r < 0
and 0 ≤ θ < 2π.
(r, θ) =
(b) (4, 4 sq root3 ) (i) Find polar coordinates (r, θ) of the
point, where r > 0 and 0 ≤ θ < 2π....
The Cartesian coordinates of a point are given. (a) (−4, 4) (i)
Find polar coordinates (r,...
The Cartesian coordinates of a point are given. (a) (−4, 4) (i)
Find polar coordinates (r, θ) of the point, where r > 0 and 0 ≤
θ < 2π. (r, θ) (ii) Find polar coordinates (r, θ) of the point,
where r < 0 and 0 ≤ θ < 2π. (r, θ) (b) (3, 3 3 ) (i) Find
polar coordinates (r, θ) of the point, where r > 0 and 0 ≤ θ
< 2π. (r, θ) =...
The Cartesian coordinates of a point are given.
(a) (5
3
, 5)(i) Find polar coordinates (r,...
The Cartesian coordinates of a point are given.
(a) (5
3
, 5)(i) Find polar coordinates (r, θ) of the point,
where
r > 0 and 0 ≤ θ < 2π.
(r, θ) =
(ii) Find polar coordinates (r, θ) of the point, where
r < 0 and 0 ≤ θ < 2π.
(r, θ) =
(b)
(1, −3)
(i) Find polar coordinates (r, θ) of the point,
where
r > 0 and 0 ≤ θ <...
57.
a. Use polar coordinates to compute the (double integral (sub
R)?? x dA, R x2...
57.
a. Use polar coordinates to compute the (double integral (sub
R)?? x dA, R x2 + y2) where R is the region in the first quadrant
between the circles x2 + y2 = 1 and x2 + y2 = 2.
b. Set up but do not evaluate a double integral for the mass of
the lamina D={(x,y):1≤x≤3, 1≤y≤x3} with density function ρ(x, y) =
1 + x2 + y2.
c. Compute??? the (triple integral of ez/ydV), where E=
{(x,y,z):...