Question

A mass of 100 g stretches a spring 1.568 cm. If the mass is set in...

A mass of 100 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 40 cms, and if there is no damping, determine the position u of the mass at any time t.

Enclose arguments of functions in parentheses. For example, sin(2x).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in...
A mass of 50 g stretches a spring 1.568 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 40 cm/s, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer. u(t)=?
A mass of 100 g stretches a spring 5 cm. If the mass is set in...
A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 10 cm/s, and if there is no damping, determine the position u of the mass at any time t. (Use g = 9.8 m/s2  for the acceleration due to gravity. Let u(t), measured positive downward, denote the displacement in meters of the mass from its equilibrium position at time t seconds.) u(t) = When does...
A mass of 68g stretches a spring 13cm. The mass is set in motion from its...
A mass of 68g stretches a spring 13cm. The mass is set in motion from its equlibrium position with a downward velocity of 13cm/s and no damping is applied. Determine the position u of the mass at any time t. Use 9.8m/s2 as the acceleration due to gravity. Pay close attention to the units.u(t)= m When does the mass first return to its equilibrium position?t=
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping...
A mass of 3 kg stretches a spring 61.25 cm. Supposing that there is no damping and that the mass is set in motion from 0.5 m above its equilibrium position with a downward velocity of 2 m/s, determine the position of the mass at any time. Find the amplitude, the frequency, the period and the phase shift of the motion.
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward,...
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from...
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from a point 2/3 meter above the equilibrium position with a downward velocity of 5 m/sec. (a) Find the equation of motion. (b)Assume that the entire spring-mass system is submerged in a liquid that imparts a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the value of β so that the subsequent motion is overdamped.
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by...
A mass of 8 kg stretches a spring 16 cm. The mass is acted on by an external force of 7sin⁡(t/4)N and moves in a medium that imparts a viscous force of 3 N when the speed of the mass is 6 cm/s.If the mass is set in motion from its equilibrium position with an initial velocity of 4 cm/s, determine the position u of the mass at any time t. Use 9.8 m/s^2 as the acceleration due to gravity....
A mass of 1 kg stretches a spring 9.8 m. The mass is acted on by...
A mass of 1 kg stretches a spring 9.8 m. The mass is acted on by an external force of 4 cos(t) N. If the mass is set in motion from its equilibrium position with a downward velocity of 2 m/s, find the position of the mass at any time. Identify the transient (i.e., complementary) and steady state (i.e., particular) solutions. Does the motion exhibit resonance or a beat?
A mass of 1kg stretches a spring by 32cm. The damping constant is c=0. Exterbal vibrations...
A mass of 1kg stretches a spring by 32cm. The damping constant is c=0. Exterbal vibrations create a force of F(t)= 4 sin 3t Netwons, setting the spring in motion from its equilibrium position with zero velocity. What is the coefficient of sin 3t of the steady-state solution? Use g=9.8 m/s^2. Express your answe is two decimal places.
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then...
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to f(t) = 4 sin(4t) is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity. (Use g = 32 ft/s2 for the acceleration due to gravity.) What is x(t) ?...