Question

For the vectors Bold u equalsleft angle 3 comma 1 right angle and Bold v equalsleft...

For the vectors Bold u equalsleft angle 3 comma 1 right angle and Bold v equalsleft angle negative 1 comma negative 4 right angle​, express Bold u as the sum Bold u equalsBold pplusBold n​, where Bold p is parallel to Bold v and Bold n is orthogonal to Bold v.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Compute the angle between the vectors u = [2, -1, 1] and and v =...
1. Compute the angle between the vectors u = [2, -1, 1] and and v = [1, -2 , -1] 2. Given that : 1. u=[1, -3] and v=[6, 2], are u and v orthogonal? 3. if u=[1, -3] and v=[k2, k] are orthogonal vectors. What is the value(s) of k? 4. Find the distance between u=[root 3, 2, -2] and v=[0, 3, -3] 5. Normalize the vector u=[root 2, -1, -3]. 6. Given that: v1 = [1, - C/7]...
1) If u and v are orthogonal unit vectors, under what condition au+bv is orthogonal to...
1) If u and v are orthogonal unit vectors, under what condition au+bv is orthogonal to cu+dv (where a, b, c, d are scalars)? What are the lengths of those vectors (express them using a, b, c, d)? 2) Given two vectors u and v that are not orthogonal, prove that w=‖u‖2v−uuT v is orthogonal to u, where ‖x‖ is the L^2 norm of x.
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the...
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the sum of two orthogonal vectors, one in span{U} and one orthogonal to U
Find the angle theta between vectors u=(5,6) and v=(-8,7). Find a unit vector orthogonal to v.
Find the angle theta between vectors u=(5,6) and v=(-8,7). Find a unit vector orthogonal to v.
Let u and v be vectors in 3-space with angle θ between them, 0 ≤ θ...
Let u and v be vectors in 3-space with angle θ between them, 0 ≤ θ ≤ π. Which of the following is the only correct statement? (a) u × v is parallel to v, and |u × v| = |u||v| cos θ. (b) u × v is perpendicular to u, and |u × v| = |u||v| cos θ. (c) u × v is parallel to v, and |u × v| = |u||v|sin θ. (d) u × v is perpendicular...
(uxv) is orthogonal to (u+v) and (u-v) u and v are nonzero vectors not sure where...
(uxv) is orthogonal to (u+v) and (u-v) u and v are nonzero vectors not sure where to go from this I do the cross product of uxv...what do i do for u+v and u-v?? is it a dot product?
Determine whether the given vectors parallel, orthogonal, or neither. If they are neither parallel nor orthogonal,...
Determine whether the given vectors parallel, orthogonal, or neither. If they are neither parallel nor orthogonal, give the acute angle between them, to the nearest degree. a) u = 〈7, −2, 3〉 v = 〈−1, −4, 5〉 b.) u = 〈−3, 4, −6〉 v = 〈-12 , 16,- 24〉
In 3 dimensions, draw vectors u, v, w, and x such that u+v+w=x. The vectors u...
In 3 dimensions, draw vectors u, v, w, and x such that u+v+w=x. The vectors u and x share an initium. You may pick the size of your vectors. Make sure the math works. Find the angle between vector x and vector u.
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3 √ 3 , v3=√ 3 √ 5 √ 7, v4 = 1 0 0 form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 = (1 0 −1 0) , a2 = 0 1 0 −1. Find a basis for the orthogonal complement V ⊥...
Do the vectors v1 =   1 2 3   , v2 = ...
Do the vectors v1 =   1 2 3   , v2 =   √ 3 √ 3 √ 3   , v3   √ 3 √ 5 √ 7   , v4 =   1 0 0   form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 =   ...