Question

Consider the function f : R 2 → R defined by f(x, y) = 4 +...

Consider the function f : R 2 → R defined by f(x, y) = 4 + x 3 + y 3 − 3xy.

(a)Compute the directional derivative of f at the point (a, b) = ( 1 2 , 1 2 ), in the direction u = ( √ 1 2 , − √ 1 2 ). At the point ( 1 2 , 1 2 ), is u the direction of steepest ascent, steepest descent, or neither? Justify your answer.

(b)Must f attain an absolute minimum and an absolute maximum on the rectangle D = [0, 2] × [0, 4]? Justify your answer.

(c)Calculate the rate of change of f along the curve r(t) = (t, t2 ), at t = −1.

(d) Classify the critical points of f using the second derivative test.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
] Consider the function f : R 2 → R defined by f(x, y) = x...
] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
s] Consider the function f : R 2 → R defined by f(x, y) = x...
s] Consider the function f : R 2 → R defined by f(x, y) = x ln(x + 2y). (a) Find the gradient of f(x, y) at the point P(e/3, e/3). (b) Use the gradient to find the directional derivative of f at P(e/3, e/3) in the direction of the vector ~u = h−4, 3i. (c) Find a unit vector (based at P) pointing in the direction in which f increases most rapidly at P.
Consider the function F(x,y)=e^((-x^2/4)-(y^2/4)) and the point P(−1,1). a. Find the unit vectors that give the...
Consider the function F(x,y)=e^((-x^2/4)-(y^2/4)) and the point P(−1,1). a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P.
Consider the function F(x,y) = e^(((-x^2)/2)-((y^2)/2)) and the point P(-3,3). a. Find the unit vectors that...
Consider the function F(x,y) = e^(((-x^2)/2)-((y^2)/2)) and the point P(-3,3). a. Find the unit vectors that give the direction of the steepest ascent and the steepest descent at P. b. Find a vector that points in a direction of no change at P.
For f(x,y,z) = sqrt(35-x^2-4y^2-2z) 1. Find the gradient of f(x,y,z) 2. Evaluate delta f(x,y,z) 3. Find...
For f(x,y,z) = sqrt(35-x^2-4y^2-2z) 1. Find the gradient of f(x,y,z) 2. Evaluate delta f(x,y,z) 3. Find the unit vectors U+ and U- , that give the direction of steepest ascent and the steepest descent respectively.
f(x, y) = 4 + x^3 + y^3 − 3xy (a,b)=(0.5,0.5) u = ( √ 1...
f(x, y) = 4 + x^3 + y^3 − 3xy (a,b)=(0.5,0.5) u = ( √ 1 /2 , − √ 1 /2 ) a) Calculate the rate of change of f along the curve r(t) = (t, t2 ), at t = −1 b)Classify the critical points of f using the second derivative test.
6. (5 marks) Consider the function f defined by f (x, y) = ln(x − y)....
6. Consider the function f defined by f (x, y) = ln(x − y). (a) Determine the natural domain of f. (b) Sketch the level curves of f for the values k = −2, 0, 2. (c) Find the gradient of f at the point (2,1), that is ∇f(2,1). (d) In which unit vector direction, at the point (2,1), is the directional derivative of f the smallest and what is the directional derivative in that direction?
For f(x, y) = x2 + 4xy - y2 at the point P(2, 1), a) find...
For f(x, y) = x2 + 4xy - y2 at the point P(2, 1), a) find the unit vector u in the direction of steepest ascent; b) find the unit vector u in the direction of steepest descent; and c) find a unit vector u that points in the direction of no change in the function. show all work please a) b) c)
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of...
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of the function. (b) Find the directional derivative of the function at the point P(π/2,π/6) in the direction of the vector v = <sqrt(3), −1>   (c) Compute the unit vector in the direction of the steepest ascent at A (π/2,π/2)
If f(x, y) = 4 + x^3 + y^3 − 3xy Must f attain an absolute...
If f(x, y) = 4 + x^3 + y^3 − 3xy Must f attain an absolute minimum and an absolute maximum on the rectangle D = [0, 2] × [0, 4]?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT