Question

Suppose a tin box is to be constructed with a square base, an open top and...

Suppose a tin box is to be constructed with a square base, an open top and a volume of 32 cubic inches. The cost of the tin to construct the box is $0.15 per square inch for the sides and $0.30 per square inch for the base.

a) The minimized cost of the tin box is

b) The cost is minimized at critical point x=a because the first derivative test found that

  • A. $$f'(x)\text{ was negative to the left of x=a and positive to the right}$$
  • B. $$f''(a)>0$$
  • C. $$f'(x)\text{ was positive to the left of x=a and negative to the right}$$
  • D. $$f'(a)=0$$
  • E. $$f''(a)<0$$

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a tin box is to be constructed with a square base, an open top and...
Suppose a tin box is to be constructed with a square base, an open top and a volume of 32 cubic inches. The cost of the tin to construct the box is $0.15 per square inch for the sides and $0.30 per square inch for the base. 1. The minimized cost of the tin box is A. $4.82 B. $3.50 C. $0 D. $9.07 E. none of the other answers 2. The cost is minimized at critical point x=a because...
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
Problem: A box with an open top is to be constructed from a square piece of...
Problem: A box with an open top is to be constructed from a square piece of cardboard, with sides 6 meters in length, by cutting a square from each of the four corners and bending up the sides. Find the dimensions that maximize the volume of the box and the maximum volume.
A 10 ft3 capacity rectangular box with open top is to be constructed so that the...
A 10 ft3 capacity rectangular box with open top is to be constructed so that the length of the base of the box will be twice as long as its width. The material for the bottom of the box costs 20 cents per square foot and the material for the sides of the box costs 10 cents per square foot. Find the dimensions of the least expensive box that can be constructed.
A box with a square base and open top must have a volume of 108000 cm^3....
A box with a square base and open top must have a volume of 108000 cm^3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 157216 cm3cm3....
A box with a square base and open top must have a volume of 157216 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
A box with an open top is to be constructed from a square piece of cardboard,...
A box with an open top is to be constructed from a square piece of cardboard, 22 in. wide, by cutting out a square from each of the four corners and bending up the sides. What is the maximum volume of such a box? (Round your answer to two decimal places.)
A 10-inch square piece of metal is to be used to make an open-top box by...
A 10-inch square piece of metal is to be used to make an open-top box by cutting equal-sized squares from each corner and folding up the sides. The length, width, and height of the box are each to be less than 7 inches. What size squares should be cut out to produce a box with volume 50 cubic inches? What size squares should be cut out to produce a box with largest possible volume?
A box with an open top is to be constructed from a square piece of cardboard,...
A box with an open top is to be constructed from a square piece of cardboard, 6 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have (round your answer to the nearest thousandth).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT