Question

A parametric curve r (t) has the property that r ″ ( t ) = (...

A parametric curve r (t) has the property that r ″ ( t ) = ( 1 , 0 , 2 t ) and r ′ (0) = (1 , − 1 , − 1) The tangent line to this curve is parallel to the xy-plane when t =

A.None of the above / The tangent line is never parallel to the xy-plane

B. 1 and -1

C. 0

D. -1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
Find parametric equations for the tangent line to the curve r(t)= <t^7, t^6, t^5> when t=1
Find parametric equations for the tangent line to the curve r(t)= <t^7, t^6, t^5> when t=1
3. The parametric curve ~r1(t) = 4t~i + (2t − 2)~j + (6t 2 − 7)~k...
3. The parametric curve ~r1(t) = 4t~i + (2t − 2)~j + (6t 2 − 7)~k is given. (a) Find a parametric equation of the tangent line at the point (4, 0, −1) (b) Find points on the curve at which the tangent lines are perpendicular to the line x = z, y = 0 (c) Show that the curve is at the intersection between a plane and a cylinder
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t)...
Consider the parametric curve given by the equations: x = tsin(t) and y = t cos(t) for 0 ≤ t ≤ 1 (a) Find the slope of a tangent line to this curve when t = 1. (b) Find the arclength of this curve
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3...
7. For the parametric curve x(t) = 2 − 5 cos(t), y(t) = 1 + 3 sin(t), t ∈ [0, 2π) Part a: (2 points) Give an equation relating x and y that represents the curve. Part b: (4 points) Find the slope of the tangent line to the curve when t = π 6 . Part c: (4 points) State the points (x, y) where the tangent line is horizontal
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part...
For the parametric curve x(t) = 2−5cos(t), y(t) = 1 + 3sin(t), t ∈ [0,2π) Part a: Give an equation relating x and y that represents the curve. Part b: Find the slope of the tangent line to the curve when t = π/6 . Part c: State the points (x,y) where the tangent line is horizontal.
1. Graph the curve given in parametric form by x = e t sin(t) and y...
1. Graph the curve given in parametric form by x = e t sin(t) and y = e t cos(t) on the interval 0 ≤ t ≤ π2. 2. Find the length of the curve in the previous problem. 3. In the polar curve defined by r = 1 − sin(θ) find the points where the tangent line is vertical.
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y =...
Consider the parametric curve C defined by the parametric equations x = 3cos(t)sin(t) and y = 3sin(t). Find the expression which represents the tangent of line C. Write the equation of the line that is tangent to C at t = π/ 3.
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t <...
Consider the parametric curve x = t2, y = t3 + 3t, −∞ < t < ∞. (a) Find all of the points where the tangent line is vertical. (b) Find d2y/dx2 at the point (1, 4). (c) Set up an integral for the area under the curve from t = −2 to t = −1. (d) Set up an integral for the length of the curve from t=−1 to t=1.
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 ....
Consider the parametric curve defined by x = 3t − t^3 , y = 3t^2 . (a) Find dy/dx in terms of t. (b) Write the equations of the horizontal tangent lines to the curve (c) Write the equations of the vertical tangent lines to the curve. (d) Using the results in (a), (b) and (c), sketch the curve for −2 ≤ t ≤ 2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT