Question

The next problem had two decision variables (X and Z). Find the value for x and...

The next problem had two decision variables (X and Z). Find the value for x and z that maximizes Y= f(X,Z).

y=5000–10X+40Z+XZ–0.8Z^2 -0.5X^2

Hint: Take the partial derivative of Y with respect to X (ↃY/ↃX) = 0 and the partial derivative of Y with respect to Z (ↃY/ↃZ) = 0. Set these partial derivatives equal to zero and use the two equations to solve ** for X and Z . Or you can use the original equation and Solver in Excel where Y is the objective you are maximizing and X and Y are the changing cells (or choice variables).

Homework Answers

Answer #1

Please feel free to ask any query in the comment box

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. a.       For the following total profit function of a firm, where X and Y are...
4. a.       For the following total profit function of a firm, where X and Y are two goods sold by the firm: Profit = 196X – 6X2 –XY -5Y2 +175Y -270 (a)          Determine the levels of output of both goods at which the firm maximizes total profit. (b)          Calculate the profit. (20 points) To work problem 4 you will need to                 a. Find the partial derivative (see p. 106) with respect each of the variables. Remember that when taking...
Consider the surface x^7z^2+sin(y^7z^2)+10=0 Use implicit differentiation to find the following partial derivatives. ∂z/∂x= ∂z/∂y=
Consider the surface x^7z^2+sin(y^7z^2)+10=0 Use implicit differentiation to find the following partial derivatives. ∂z/∂x= ∂z/∂y=
X & Y are random variables Follow a joint probability distribution.    Have finite 1st & 2nd...
X & Y are random variables Follow a joint probability distribution.    Have finite 1st & 2nd moments. Var(X)≠0. Real numbers a & b, which minimize E[(Y – a − bX)^2] over all possible (a,b) are being determined for least squares/theoretical linear regression of Y on X. Solve f(a,b) = E[(Y – a − bX)^2] in order to find the critical points where the gradient equals 0. Differentiation & expectation can be switched with respect to a & b, such that...
(a) Find an equation of the plane tangent to the surface xy ln x − y^2...
(a) Find an equation of the plane tangent to the surface xy ln x − y^2 + z^2 + 5 = 0 at the point (1, −3, 2) (b) Find the directional derivative of f(x, y, z) = xy ln x − y^2 + z^2 + 5 at the point (1, −3, 2) in the direction of the vector < 1, 0, −1 >. (Hint: Use the results of partial derivatives from part(a))
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first...
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first partial derivatives. Assume further that s=s(x,y), t=t(x,y) are differentiable functions of variables x and y . (a) find the general chain rule chain rule for (∂z/∂x)y . Your subscripts will be marked. (b) Let equations F(x,y,s,t)=y+x^2+cos(t)−sin(s)+1=0, G(x,y,s,t)=x+y^2−st−2=0, implicitly define s , and t as functions of x and y . Compute ∂s/∂x)y ∂t/∂x)y at the point P(x,y,s,t)=(1,−1,π,0). (c) Let now z(s,t)=s^2+t. By using the...
Use the Chain Rule to find the indicated partial derivatives. z = x2 + xy3, x...
Use the Chain Rule to find the indicated partial derivatives. z = x2 + xy3, x = uv2 + w3, y = u + vew when u = 2, v = 2, w = 0
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1 Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =    + h(y) Find the derivative of h(y). h′(y) = Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1. Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =   + h(y) Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt + (8y + 6t − 1) dy...
(Lagrange Multipliers with Three Variables) Find the global minimum value of f(x,y,z)=(x^2/4)+y^2 +(z^2/9) subject to x...
(Lagrange Multipliers with Three Variables) Find the global minimum value of f(x,y,z)=(x^2/4)+y^2 +(z^2/9) subject to x - y + z = 8. Now sketch level surfaces f(x,y,z) = k for k = 0; 1; 4 and the plane x-y +z = 8 on the same set of axes to help you explain why the point you found corresponds to a minimum value and why there will be no maximum value.
Can you please solve this question, Using separation of variables, write down a complete list of...
Can you please solve this question, Using separation of variables, write down a complete list of L^2 eigenfunctions and of eigenvalues for the Laplacian on the cylinder D X [-1, 1], with homogeneous Dirichlet boundary conditions, where D is the (two-dimensional) disk centered at the origin of radius 2. b) Use this to solve the heat equation partial u / partial t = Delta u on this cylinder with homogeneous Dirichlet boundary conditions, with initial data u(x, y, z, 0)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT