Question

Calculate the flux of F⃗ = (19x + y)⃗i + (20y + z) ⃗j + (21z...

Calculate the flux of F⃗ = (19x + y)⃗i + (20y + z) ⃗j + (21z + x) ⃗k out of the sphere of radius 11, centered at the origin, by using the Divergence Theorem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the divergence theorem to calculate the flux of the vector field F = (y +xz)...
Use the divergence theorem to calculate the flux of the vector field F = (y +xz) i+ (y + yz) j - (2x + z^2) k upward through the first octant part of the sphere x^2 + y^2 + z^2 = a^2.
Check the divergence theorem for the field ⃗a(x, y, z) = r sin θ(rˆ + φˆ)...
Check the divergence theorem for the field ⃗a(x, y, z) = r sin θ(rˆ + φˆ) and the volume enclosed by the sphere of radius a centered at the origin.
8. Use the Divergence Theorem to compute the net outward flux of the field F= <-x,...
8. Use the Divergence Theorem to compute the net outward flux of the field F= <-x, 3y, z> across the surface S, where S is the surface of the paraboloid z= 4-x^2-y^2, for z ≥ 0, plus its base in the xy-plane. The net outward flux across the surface is ___. 9. Use the Divergence Theorem to compute the net outward flux of the vector field F=r|r| = <x,y,z> √x^2 + y^2 + z^2 across the boundary of the region​...
10.) (23 pts.) Verify the Divergence Theorem for P(x, y, z) = (y) i+ (—x) j...
10.) (23 pts.) Verify the Divergence Theorem for P(x, y, z) = (y) i+ (—x) j + (—xz) k , where the solid D is enclosed by the paraboloid z = x^2 + y^2 and the plane z = 1.
Let Q be the region bounded by the sphere x ^ 2 + y ^ 2...
Let Q be the region bounded by the sphere x ^ 2 + y ^ 2 + z ^ 2 = 25. Calculate the flow of the vector field F (x, y, z) = 2x ^ 2 i + 2y ^ 2 j + 2z ^ 2 k coming out of the sphere. (Use the Divergence or Gauss theorem). Evaluate the appropriate integral
Use the Divergence Theorem to find the outward flux of F=9y i+5xy j−6z k across the...
Use the Divergence Theorem to find the outward flux of F=9y i+5xy j−6z k across the boundary of the region​ D: the region inside the solid cylinder x2+y2≤4 between the plane z=0 and the paraboloid z=x2+y2 The outward flux of F=9y i+5xy j−6z k across the boundry of region D is____
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux...
Let F(x,y,z) = ztan-1(y^2) i + (z^3)ln(x^2 + 8) j + z k. Find the flux of F across the part of the paraboloid x2 + y2 + z = 20 that lies above the plane z = 4 and is oriented upward.
A beehive lies inside a chicken wire cage described by the equation x2 +y2 +z2 =...
A beehive lies inside a chicken wire cage described by the equation x2 +y2 +z2 = 1. The velocity of the emerging bees is given by the vector field F(x,y,z) = (x)i+(y)j+(z)k. The flux of F over the chicken wire surface measures how many bees are flying across the chicken wire, out of the cage. A) Calculate this flux using a surface integral B) Calculate this flux using the divergence theorem
Let F ( x , y , z ) =< e^z sin( y ) + 3x...
Let F ( x , y , z ) =< e^z sin( y ) + 3x , e^x cos( z ) + 4y , cos( x y ) + 5z >, and let S1 be the sphere x^2 + y^2 + z^2 = 4 oriented outwards Find the flux integral ∬ S1 (F) * dS. You may with to use the Divergence Theorem.
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = ey tan(z)i + y 3 − x2 j + x sin(y)k, S is the surface of the solid that lies above the xy-plane and below the surface z = 2 − x4 − y4, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT