Question

Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exists.

{5x + 17y + 7z = 14

{2x + 7y -5z = -3

{ x + 3y - 3z = 8

Find the row-echelon form of the matrix for the given system of equations. (Do not include the vertical bar in the augmentedmatrix.)

Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.

A. There is one solution. The solution set is {(_, _, _)}(Simplify your answers.)

B. There are infinitely many solutions. The solution set is {(_, _, z)}where z is any real number. (Type expressions using z as the variable. Use integers or fractions for any numbers in theexpressions.)

C. There is no solution. The solution set is empty set∅.

Answer #1

Use Gaussian elimination to find the complete solution to the
following system of equations, or show that none exists.
{-x + y + z = -1
{-x + 5y -15z = -29
{ 7x - 6y - 11z = 0
Find the row-echelon form of the matrix for the given system of
equations.
(Do not include the vertical bar in the augmented matrix.)
Select the correct choice below and, if necessary, fill in the
answer boxes to complete your choice....

Use Gaussian elimination to find the complete solution to the
following system of equations, or show that none exists.
{-x + y + z = -2
{-x + 5y -19z = -30
{ 7x - 5y - 17z = 0
Find the row-echelon form of the matrix for the given system of
equations. (Do not include the vertical bar in the augmented
matrix.)
Select the correct choice below and, if necessary, fill in the
answer boxes to complete your choice....

using matlab Write your own routine for Gaussian elimination
without any pivoting. Input for the routine should consist of the
number (n) of equations and the augmented matrix. Output should be
the vector solution of the system. Test your code by using it to
solve the following two problems: a) x + y + w + z = 10, 2x + 3y +
w + 5z = 31, −x + y − 5w + 3z = −2, 3x + y...

Solve the system of equations using matrices. Use the Gaussian
elimination method with back-substitution.
{3a - b -3c = 13
{2a - b + 5c = -5
{a + 2b - 5c = 10
Use the Gaussian elimination method to obtain the matrix in
row-echelon form. Choose the correct answer below.
The solution set is {(_,_,_,_)}

Solve the system of equations.
4x-3y+z = 18
x+y = 7
Select the correct choice below and, if necessary, fill in the
answer boxes to complete your choice.
A. This system has exactly one solution. The solution is left
parenthesis nothing comma nothing comma nothing right parenthesis .
(Type integers or simplified fractions.)
B. This system has infinitely many solutions of the form left
parenthesis nothing comma nothing comma z right parenthesis , where
z is any real number. (Type...

Write the system of equations as an augmented matrix. Then solve
the system by putting the matrix in reduced row echelon form.
x+2y−z=-10
2x−3y+2z=2
x+y+3z=0

4. Solve the system of linear equations by using the
Gauss-Jordan (Matrix) Elimination Method. No credit in use any
other method. Use exactly the notation we used in class and in the
text. Indicate whether the system has a unique solution, no
solution, or infinitely many solutions. In the latter case, present
the solutions in parametric form.
3x + 6y + 3z = -6
-2x -3y -z = 1
x +2y + z = -2

1)Solve the system of linear equations, using the Gauss-Jordan
elimination method. (If there is no solution, enter NO SOLUTION. If
there are infinitely many solutions, express your answer in terms
of the parameters t and/or s.)
x1
+
2x2
+
8x3
=
6
x1
+
x2
+
4x3
=
3
(x1,
x2, x3)
=
2)Solve the system of linear equations, using the Gauss-Jordan
elimination method. (If there is no solution, enter NO SOLUTION. If
there are infinitely many solutions, express...

2. Solve the system of linear equations by using the
Gauss-Jordan (Matrix) Elimination Method. No credit in use any
other method. Use exactly the notation we used in class and in the
text. Indicate whether the system has a unique solution, no
solution, or infinitely many solutions.In the latter case,present
the solutions in parametric form
x+2y+3z=7
-12z=24
-10y-5z=-40

Use Gaussian elimination with backward substitution to solve the
system of linear equations.
x+y-z=-4
-x-4y+4z=1
-4x-3y+2z=15
What is the solution set?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 35 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 4 hours ago

asked 4 hours ago

asked 4 hours ago

asked 4 hours ago