Question

Consider the expression lim as x→∞ of g(x)^f(x). Suppose we know lim as x→∞ of g(x)...

Consider the expression lim as x→∞ of g(x)^f(x). Suppose we know
lim as x→∞ of g(x) = 1
lim as x→∞ of f(x) = ∞

Explain using sentences (that can include mathematical symbols and expressions) how you would approach evaluating this limit.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following statement is FALSE: If lim x!6 [f(x)g(x)] exists, then the limit must be f(6)g(6)....
The following statement is FALSE: If lim x!6 [f(x)g(x)] exists, then the limit must be f(6)g(6). Give an example of two functions f(x) and g(x) that demonstrate the falsity of this state- ment - that is, two functions f(x) and g(x) such that lim x!6 [f(x)g(x)] exists, but is not equal to f(6)g(6). Explain your answer.
consider the function f(x)= -1/x, 3, √x+2 if x<0 if 0≤x<1 if x≥1 a)Evaluate lim,→./ f(x)...
consider the function f(x)= -1/x, 3, √x+2 if x<0 if 0≤x<1 if x≥1 a)Evaluate lim,→./ f(x) and lim,→.2 f(x) b. Does lim,→. f(x) exist? Explain. c. Is f(x) continuous at x = 1? Explain.
1) Consider the function. f(x) = x5 − 5 (a) Find the inverse function of f....
1) Consider the function. f(x) = x5 − 5 (a) Find the inverse function of f. f −1(x) = 2) Consider the function f(x) = (1 + x)3/x. Estimate the limit lim x → 0 (1 + x)3/x by evaluating f at x-values near 0. (Round your answer to five significant figures.) =
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y)...
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y) = L if 1. ∃r > 0 s.th. f(x, y) is defined when 0 < || (x, y) − (a, b) || < r and 2. given ε > 0 we can find δ > 0 s.th. 0 < || (x, y) − (a, b) || < δ =⇒ | f(x, y) − L | < ε how do i show that this is...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all...
Let f(x) and g(x) be polynomials and suppose that we have f(a) = g(a) for all real numbers a. In this case prove that f(x) and g(x) have exactly the same coefficients. [Hint: Consider the polynomial h(x) = f(x) − g(x). If h(x) has at least one nonzero coefficient then the equation h(x) = 0 has finitely many solutions.]
1A. Complete the table. (Round your answers to five decimal places.) lim x→0 x + 16...
1A. Complete the table. (Round your answers to five decimal places.) lim x→0 x + 16 − 4 x x −0.1 −0.01 −0.001 0 0.001 0.01 0.1 f(x) ? Use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result. (Round your answer to five decimal places.) lim x→0 x + 16 − 4 x ≈   1B. Find the limit L. lim x→−6 2x2 + 16x + 24 x + 6 L...
Consider the following Boolean expression (a + b) . (a + c). Provide a simpler expression...
Consider the following Boolean expression (a + b) . (a + c). Provide a simpler expression (fewer gates) that is equivalent. Show that your expression is equivalent by building truth tables for both expressions in the same way as we've done before. 1a. Imagine that you have designed a circuit that uses N expressions of the form (a + b) . (a + c). We replace each of these with your solution to question 1. How many fewer transistors will...
1. Evaluate the limit using L'Hospital's rule if necessary lim x→∞ (1+ 12 / x)^x/1 2....
1. Evaluate the limit using L'Hospital's rule if necessary lim x→∞ (1+ 12 / x)^x/1 2. In which limits below can we use L'Hospital's Rule? lim x→π/5 sin(5x) /5x−π lim x→−∞ e^−x / x lim x→0 2x/ cotx lim x→0 sin(3x) / 3x I Need help with both questions please! thank you so much.
Consider the following limit. lim (x^2 + 4) (x--> 5) 1. Find the limit L. 2....
Consider the following limit. lim (x^2 + 4) (x--> 5) 1. Find the limit L. 2. Find the largest δ such that |f(x) − L| < 0.01 whenever 0 < |x − 5| < δ. (Assume 4 < x < 6 and δ > 0. Round your answer to four decimal places.) I am honestly so lost... if you could please show work I would greatly appreciate it!!
Consider the following expression: 7^n-6*n-1 Using induction, prove the expression is divisible by 36. I understand...
Consider the following expression: 7^n-6*n-1 Using induction, prove the expression is divisible by 36. I understand the process of mathematical induction, however I do not understand how the solution showed the result for P_n+1 is divisible by 36? How can we be sure something is divisible by 36? Please explain in great detail.