Question

1. Determine if the statements are true or false: a. The eigenvalues of a lower triangular...

1. Determine if the statements are true or false:

a. The eigenvalues of a lower triangular matrix are the diagonal entries of the matrix.

b. For every square matrix A, the sum of all the eigenvalues of A is equal to the sum of all the diagonal entries of A.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that if A is an (n × n) upper triangular matrix or lower triangular matrix,...
Show that if A is an (n × n) upper triangular matrix or lower triangular matrix, its eigenvalues are the entries on its main diagonal. (You may limit yourself to the (3 × 3) case.)
THEOREM (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of...
THEOREM (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is upper triangular. (c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero. (d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper triangular matrix...
Deside whether the statements below are true or false. If true, explain why true. If false,...
Deside whether the statements below are true or false. If true, explain why true. If false, give a counterexample. (a) If a square matrix A has a row of zeros, then A is not invertible. (b) If a square matrix A has all 1s down the main diagonal, then A is invertible. (c) If A is invertible, then A−1 is invertible. (d) If AT is invertible, then A is invertible.
A triangular matrix is called unit triangular if it is square and every main diagonal element...
A triangular matrix is called unit triangular if it is square and every main diagonal element is a 1. (a) If A can be carried by the gaussian algorithm to row-echelon form using no row interchanges, show that A = LU where L is unit lower triangular and U is upper triangular. (b) Show that the factorization in (a) is unique.
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...
Decide if each of the following statements are true or false. If a statement is true,...
Decide if each of the following statements are true or false. If a statement is true, explain why it is true. If the statement is false, give an example showing that it is false. (a) Let A be an n x n matrix. One root of its characteristic polynomial is 4. The dimension of the eigenspace corresponding to the eigenvalue 4 is at least 1. (b) Let A be an n x n matrix. A is not invertible if and...
Consider the proposed matrix factorization: A = LS, where L is lower triangular with 1’s on...
Consider the proposed matrix factorization: A = LS, where L is lower triangular with 1’s on the diagonal, and S is symmetric. (a) Show how the LU decomposition can be used to derive this factorization. (b) What conditions must A satisfy for this factorization to exist?
Take a 2x2 matrix A which has eigenvalues 1 and -1. Determine if any of the...
Take a 2x2 matrix A which has eigenvalues 1 and -1. Determine if any of the following is true. (a) The matrix A2 is identity matrix. (b) The matrix A2 also has eigenvalues 1 and -1. Give reason(s) to support your answer. There will be no marks for yes or no as answer.
True or false; for each of the statements below, state whether they are true or false....
True or false; for each of the statements below, state whether they are true or false. If false, give an explanation or example that illustrates why it's false. (a) The matrix A = [1 0] is not invertible.                               [1 -2] (b) Let B be a matrix. The rowspaces row (B), row (REF(B)) and row (RREF(B)) are all equivalent. (c) Let C be a 5 x 7 matrix with nullity 3. The rank of C is 2. (d) Let D...
(6) Label each of the following statements as True or False. Provide justification for your response....
(6) Label each of the following statements as True or False. Provide justification for your response. (b) True/False The scalar λ is an eigenvalue of a square matrix A if and only if the equation (A − λIn)x = 0 has a nontrivial solution. (c) True/False If λ is an eigenvalue of a matrix A, then there is only one nonzero vector v with Av = λv. (d) True/False The eigenspace of an eigenvalue of an n × n matrix...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT