Question

A company wants to manufacture a rectangular planter box of volume 12 litres (12, 000 cm3...

A company wants to manufacture a rectangular planter box of volume 12 litres (12, 000 cm3 ). The box is open at the top and is designed to have its width equal to half of its length. The plastic used for the base of the box is stronger and costs 0.06 cents per cm2 while the plastic used for the sides of the box costs 0.04 cents per cm2. Find the length, width and height of the box for which the box has minimum cost. What is the minimum cost? Show all the reasoning and evaluate your answers to 2 decimal places.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
Design a rectangular milk carton box of width w, length l, and height h which holds...
Design a rectangular milk carton box of width w, length l, and height h which holds 512 cm3 of milk. The sides of the box cost 1 cent/cm2 and the top and bottom cost 3 cent/cm2. Find the dimensions of the box that minimize the total cost of materials used.
ASAP A company plans to manufacture a rectangular container with a square base, an open top,...
ASAP A company plans to manufacture a rectangular container with a square base, an open top, and a volume of 320 cm3. The cost of the material for the base is 0.8 cents per square centimeter, and the cost of the material for the sides is 0.2 cents per square centimeter. Determine the dimensions of the container that will minimize the cost of manufacturing it. What is the minimum cost?
A 10 ft3 capacity rectangular box with open top is to be constructed so that the...
A 10 ft3 capacity rectangular box with open top is to be constructed so that the length of the base of the box will be twice as long as its width. The material for the bottom of the box costs 20 cents per square foot and the material for the sides of the box costs 10 cents per square foot. Find the dimensions of the least expensive box that can be constructed.
A rectangular box is to have a square base and a volume of 48 ft3. If...
A rectangular box is to have a square base and a volume of 48 ft3. If the material for the base costs 4 cents per square foot, material for the top costs 20 cents per square foot, and the material for the sides costs 16 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
A rectangular box must have a volume of 2 cubic meters. The material for the base...
A rectangular box must have a volume of 2 cubic meters. The material for the base and top costs $ 2 per square meter. The material for the vertical sides costs $ 8 per square meter. (a) Express the total cost of the box in terms of the length (l) and width (w) of the base. C = $ (b) Find the dimensions of the box that costs least. length = meters width = meters height = meters
An open-top rectangular box is being constructed to hold a volume of 300 in3. The base...
An open-top rectangular box is being constructed to hold a volume of 300 in3. The base of the box is made from a material costing 8 cents/in2. The front of the box must be decorated, and will cost 12 cents/in2. The remainder of the sides will cost 2 cents/in2. Find the dimensions that will minimize the cost of constructing this box. Front width: _______ in. Depth: ________ in. Height: ________ in.