Question

Let V be the volume of a cylinder having height h and radius r, and assume...

Let V be the volume of a cylinder having height h and radius r, and assume that h and r
vary with time.
(a) How are dV /dt, dh/dt, and dr/dt related?
(b) At a certain instant, the height is 18 cm and increasing at 3 cm/s, while the radius is 30
cm and decreasing at 3 cm/s. How fast is the volume changing at that instant? Is the
volume increasing or decreasing at that instant?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The volume of a right circular cylinder is given by V= πr2h, where r is the...
The volume of a right circular cylinder is given by V= πr2h, where r is the radius of its circular base and h is its height. Differentiate the volume formula with respect to t to determine an equation relating the rates of change dV/dt , dr/dt , dh/dt.   At a certain instant, the height is 6 inches and increasing at 1 in/sec and the radius is 10 inches and decreasing at 1 in/sec. How fast is the volume changing at...
Suppose the radius, height and volume of a right circular cylinder are denoted as r, h,...
Suppose the radius, height and volume of a right circular cylinder are denoted as r, h, and V . The radius and height of this cylinder are increasing as a function of time. If dr/dt = 2 and dV/dt = 10π when r = 1, h = 2, what is the value of dh/dt at this time?
The radius of a circular cylinder is increasing at rate of 3 cm/s while the height...
The radius of a circular cylinder is increasing at rate of 3 cm/s while the height is decreasing at a rate of 4 cm/s. a.) How fast is the surface area of the cylinder changing when the radius is 11 cm and the height is 7 cm? (use A =2 pi r2 +2 pi rh ) b.) Based on your work and answer from part (a),is the surface area increasing or decreasing at the same moment in time? How do...
A circular cylinder with a radius R of 1 cm and a height H of 2...
A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of pv = h R^2 uC/cm^3 (h is a point on the z-axis). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and and the electric potential V on point A on z-axis 2 cm from the top of the cylinder.
10. A circular cylinder with a radius R of 1 cm and a height H of...
10. A circular cylinder with a radius R of 1 cm and a height H of 2 cm carries a charge density of ρV = H r2 sin φ µC/cm3 (r is a point on the z-axis, φ is an azimuthal angle). The cylinder is then placed on the xy plane with its axis the same as the z-axis. Find the electric field intensity E and the electric potential V on point A on z-axis 2 cm from the top...
The volume of a cylinder of height 9 inches and radius rr inches is given by...
The volume of a cylinder of height 9 inches and radius rr inches is given by the formula V=9πr2V=9πr2. Suppose that the radius is expanding at a rate of 0.4 inches per second. How fast is the volume changing when the radius is 2.9 inches? Use at least 5 decimal places in your answer.
The volume of a cylinder can be computed as: v = π * r * r...
The volume of a cylinder can be computed as: v = π * r * r * h Write a C++ function that computes the volume of a cylinder given r and h. Assume that the calling function passes the values of r and h by value and v by reference, i.e. v is declared in calling function and is passed by reference. The function just updates the volume v declared in calling function. The function prototype is given by:...
A sphere with a volume V and a radius of r is compressed (flattened) into the...
A sphere with a volume V and a radius of r is compressed (flattened) into the shape of a cylinder with a radius of r and a height of r/4. The volume remains constant. Show that the surface-to-volume ratio of the sphere is less than that of the flattened cylinder.
classical Mechanics problem: Find the ratio of the radius R to the height H of a...
classical Mechanics problem: Find the ratio of the radius R to the height H of a right-circular cylinder of fixed volume V that minimizes the surface area A.
The length ℓ, width w, and height h of a box change with time. At a...
The length ℓ, width w, and height h of a box change with time. At a certain instant the dimensions are ℓ = 2 m and w = h = 9 m, and ℓ and w are increasing at a rate of 7 m/s while h is decreasing at a rate of 8 m/s. At that instant find the rates at which the following quantities are changing. The length of a diagonal?