Question

1. If A is an n n matrix, prove that (a) ATA is a symmetric matrix....

1. If A is an n n matrix, prove that

(a) ATA is a symmetric matrix.

(b) A + AT is a symmetric matrix and A - AT is a skew-symmetric matrix.

(c) A is the sum of a symmetric and a skew-symmetric matrix.

Homework Answers

Answer #1

Let A be a nx n matrix. Then,

1). (AT A)T = AT (AT)T = AT A ( as (AB)T = BT AT and(AT)T = A ). Hence AT A is a symmetric matrix.

2). (A+ AT)T = AT + (AT)T = AT +A = A+ AT ( as (A+B)T = AT+BT). Hence A+ AT is a symmetric matrix.

Also, (A- AT)T = AT - (AT)T = AT -A = -( A- AT). Hence A - AT is a skew-symmetric matrix.

3. We have A = (1/2)(A+ AT)+(1/2) (A- AT)T . Now, as per part 2) above, (1/2)(A+ AT) is a symmetric matrix and (1/2) (A- AT) is a skew-symmetric matrix.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M. 1. Show that the diagonal of an anti-symmetric matrix are zero 2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA. 3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric. 4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.
A matrix A is symmetric if AT = A and skew-symmetric if AT = -A. Let...
A matrix A is symmetric if AT = A and skew-symmetric if AT = -A. Let Wsym be the set of all symmetric matrices and let Wskew be the set of all skew-symmetric matrices (a) Prove that Wsym is a subspace of Fn×n . Give a basis for Wsym and determine its dimension. (b) Prove that Wskew is a subspace of Fn×n . Give a basis for Wskew and determine its dimension. (c) Prove that F n×n = Wsym ⊕Wskew....
5. (a) Prove that det(AAT ) = (det(A))2. (b) Suppose that A is an n×n matrix...
5. (a) Prove that det(AAT ) = (det(A))2. (b) Suppose that A is an n×n matrix such that AT = −A. (Such an A is called a skew- symmetric matrix.) If n is odd, prove that det(A) = 0.
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative,...
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative, then xTAx ≥ 0 for all nonzero x in the vector space Rn.
Let A be an n × n-matrix. Show that there exist B, C such that B...
Let A be an n × n-matrix. Show that there exist B, C such that B is symmetric, C is skew-symmetric, and A = B + C. (Recall: C is called skew-symmetric if C + C^T = 0.) Remark: Someone answered this question but I don't know if it's right so please don't copy his solution
Let A be an n×n nonsingular matrix. Denote by adj(A) the adjugate matrix of A. Prove:...
Let A be an n×n nonsingular matrix. Denote by adj(A) the adjugate matrix of A. Prove: 1)   det(adj(A)) = (det(A)) 2)    adj(adj(A)) = (det(A))n−2A
Prove or disprove: Can a symmetric matrix be necessarily diagonalizable? Please show clear steps. Thank you.
Prove or disprove: Can a symmetric matrix be necessarily diagonalizable? Please show clear steps. Thank you.
For an n×n matrix, A, the trace of A is defined as the sum of the...
For an n×n matrix, A, the trace of A is defined as the sum of the entries on the main diagonal. That is, tr(A)=a11+a22+?+ann. (a) Prove that for any matrices A and B having the same size, tr(A+B)=tr(A)+tr(B) and for any scalar c, tr(cA)=ctr(A) (b) Prove tr(A)=tr(AT) for all square matrices A. (c) Prove that for any matrices A and B having the same size, tr(AB)=tr(BA). (d) Using (c), prove that if A and B are similar tr(A)=tr(B).
Prove that for a square n ×n matrix A, Ax = b (1) has one and...
Prove that for a square n ×n matrix A, Ax = b (1) has one and only one solution if and only if A is invertible; i.e., that there exists a matrix n ×n matrix B such that AB = I = B A. NOTE 01: The statement or theorem is of the form P iff Q, where P is the statement “Equation (1) has a unique solution” and Q is the statement “The matrix A is invertible”. This means...
Prove that for a matrix A(m*n): rankA + NullityA = n
Prove that for a matrix A(m*n): rankA + NullityA = n
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT