Question

Let A be a real matrix of 7 × 5 format. Answer the questions following: (1)...

Let A be a real matrix of 7 × 5 format. Answer the questions
following:
(1) Can the homogeneous system AX = 0 have a non-trivial solution?
(2) Can the columns of A form a generating system of R^7?
(3) Can the columns of A be linearly independent in R^7?

A. Yes, No, No                       D. No, No, Yes

B. Yes, Yes, Yes                     E. No, No, No

C. Yes, No, Yes                      F. No, Yes, Yes

Homework Answers

Answer #1

(C) yes, No, Yes is correct answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. Answer the following questions true or false and provide an explanation. • If you think...
7. Answer the following questions true or false and provide an explanation. • If you think the statement is true, refer to a definition or theorem. • If false, give a counter-example to show that the statement is not true for all cases. (a) Let A be a 3 × 4 matrix. If A has a pivot on every row then the equation Ax = b has a unique solution for all b in R^3 . (b) If the augmented...
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix...
n x n matrix A, where n >= 3. Select 3 statements from the invertible matrix theorem below and show that all 3 statements are true or false. Make sure to clearly explain and justify your work. A= -1 , 7, 9 7 , 7, 10 -3, -6, -4 The equation A has only the trivial solution. 5. The columns of A form a linearly independent set. 6. The linear transformation x → Ax is one-to-one. 7. The equation Ax...
Consider the matrix A= −2−2 6] [−2−3 5] [3 4−8] [−7−9 18 (all one matrix) (a)...
Consider the matrix A= −2−2 6] [−2−3 5] [3 4−8] [−7−9 18 (all one matrix) (a) How many rows ofAcontain a pivot position? (b) Do the columns ofAspanR4? (c) Does the equationA ~x=~b have a solution for every~b∈R^4? (d) Would the equation A~x=~0 have a nontrivial solution? (e) Are the columns of A linearly independent? (~x is vector x)
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be in R 17 , c be in R 20, and 0 be the vector with all zero entries. Show that each of the following statements implies the other. (a) Bx = 0 has only the trivial solution x = 0 n R 17, then (b) If Bx = c has a solution for some vector c in R 20, then the solution is unique.
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If...
1. Let a,b,c,d be row vectors and form the matrix A whose rows are a,b,c,d. If by a sequence of row operations applied to A we reach a matrix whose last row is 0 (all entries are 0) then:        a. a,b,c,d are linearly dependent   b. one of a,b,c,d must be 0.       c. {a,b,c,d} is linearly independent.       d. {a,b,c,d} is a basis. 2. Suppose a, b, c, d are vectors in R4 . Then they form a...
Here are some vectors in R 4 : u1 = [1 3 −1 1] u2 =...
Here are some vectors in R 4 : u1 = [1 3 −1 1] u2 = [1 4 −1 1] u3 = [1 0 −1 1] u4 = [2 −1 −2 2] u5 = [1 4 0 1] (a) Explain why these vectors cannot possibly be independent. (b) Form a matrix A whose columns are the ui’s and compute the rref(A). (c) Solve the homogeneous system Ax = 0 in parametric form and then in vector form. (Be sure the...
A linear system of equations Ax=b is known, where A is a matrix of m by...
A linear system of equations Ax=b is known, where A is a matrix of m by n size, and the column vectors of A are linearly independent of each other. Please answer the following questions based on this assumption, please explain it, thank you~. (1) To give an example, Ax=b is the only solution. (2) According to the previous question, what kind of inference can be made to the size of A at this time? (What is the size of...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1 ≤ i, j ≤ n) and having the following interesting property: ai1 + ai2 + ..... + ain = 0 for each i = 1, 2, ...., n Based on this information, prove that rank(A) < n. b) Let A ∈ R m×n be a matrix of rank r. Suppose there are right hand sides b for which Ax = b has no solution,...