If f(x, y) = 49 − 7x2 − y2 , find fx(1, 2) and fy(1, 2)...
If f(x, y) = 49 − 7x2 − y2 , find fx(1, 2) and fy(1, 2) and
interpret these numbers as slopes. fx(1, 2) = fy(1, 2) =
part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the...
part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the partial derivatives of the function
f(x,y)=x^6y^6/x^2+y^2
fx(x,y)=
fy(x,y)=
part 3)
Find all first- and second-order partial derivatives of the
function f(x,y)=2x^2y^2−2x^2+5y
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 4)
Find all first- and second-order partial derivatives of the
function f(x,y)=9ye^(3x)
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 5)
For the function given below, find the numbers (x,y) such that
fx(x,y)=0 and fy(x,y)=0
f(x,y)=6x^2+23y^2+23xy+4x−2
Answer: x= and...
Let f(x,y)=e^(−5x)sin(3y).
(a) Using difference quotients with Δx=0.1 and Δy=0.1, we
estimate
fx(3,2)≈
fy(3,2)≈
(b) Using...
Let f(x,y)=e^(−5x)sin(3y).
(a) Using difference quotients with Δx=0.1 and Δy=0.1, we
estimate
fx(3,2)≈
fy(3,2)≈
(b) Using difference quotients with Δx=0.01 and Δy=0.01, we find
better estimates:
fx(3,2)≈
fy(3,2)≈
Please find ALL second partial derivatives of f: fx, fy, fz,
fxx, fyy, fzz, fxy, fxz,...
Please find ALL second partial derivatives of f: fx, fy, fz,
fxx, fyy, fzz, fxy, fxz, and fyz
For ?(?, ?, ?) = (?^?)(?^?)(?^?)
THANK YOU
Consider the function f(x,y) = xe^((x^2)-(y^2))
(a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find...
Consider the function f(x,y) = xe^((x^2)-(y^2))
(a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find a
linear approximation for f (1.1, −0.9).
(b) Find fxx(1, −1), fxy(1, −1), fyy(1, −1). Use these values to
find a quadratic approximation for f(1.1,−0.9).