Question

Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0)...

Solve the initial value problem 8(t+1)dy/dt - 6y = 12t

for t > -1 with y(0) = 7

7 =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14....
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14. Find the integrating factor, u(t)= u(t)= , and then find y(t)= y(t)=
a) find all possible solutions of y''+y'-6y=12t b) solve initial value problem of y''+y'-6y=12t, y(0)=1, y'(0)=0
a) find all possible solutions of y''+y'-6y=12t b) solve initial value problem of y''+y'-6y=12t, y(0)=1, y'(0)=0
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Initial value problem dy/dt=(6t^5/1+t^6)y+7(1+t^6)^2 y(1)=8
Initial value problem dy/dt=(6t^5/1+t^6)y+7(1+t^6)^2 y(1)=8
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0...
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0 and dy/dt(0) = 1 where g(t) = t/2 for 0<t<6 and g(t) = 3 for t>6
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
Use the laplace transform to solve for the initial value problem: y''+6y'+25y=delta(t-7) y(0)=0 y'(0)=0
Use the laplace transform to solve for the initial value problem: y''+6y'+25y=delta(t-7) y(0)=0 y'(0)=0
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the...
Solve the Initial Value Problem: a) dydx+2y=9, y(0)=0 y(x)=_______________ b) dydx+ycosx=5cosx,        y(0)=7d y(x)=______________ c) Find the general solution, y(t), which solves the problem below, by the method of integrating factors. 8t dy/dt +y=t^3, t>0 Put the problem in standard form. Then find the integrating factor, μ(t)= ,__________ and finally find y(t)= __________ . (use C as the unkown constant.) d) Solve the following initial value problem: t dy/dt+6y=7t with y(1)=2 Put the problem in standard form. Then find the integrating...
Solve the given symbolic initial value problem. y''+6y'+13y = 2delta(t-pi) ; y(0)=3, y'(0)=1
Solve the given symbolic initial value problem. y''+6y'+13y = 2delta(t-pi) ; y(0)=3, y'(0)=1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT