Question

1.) For y = f ( x ), the __________ from x = a to x...

1.) For y = f ( x ), the __________ from x = a to x = a + h is ; ℎ ≠ 0.

2.) The derivative has various applications and interpretations, including:

  1. For each \x in the domain of f ′, f ́ ( x ) is the __________ of the line tangent to the graph of f at the point ( x , f ( x ) ).
  2. For each ]x in the domain of f ′, f ́ ( x ) is the _________ rate of change of y = f ( x ) with respect to x.
  3. If f ( x ) is the position of a moving object at time x, then v = f ′ ( x ) is the ___________ of the object at that time.

3.) A derivative f ′ ( x ) exists whenever   exists.

If the limit does not exist at x = c, we say that the function f is __________ at x = c.

Homework Answers

Answer #1

1.) For y = f ( x ), the limiting from x = a to x = a + h is ; ℎ ≠ 0.

2.) The derivative has various applications and interpretations, including:

  1. For each \x in the domain of f ′, f ́ ( x ) is the slope of the line tangent to the graph of f at the point ( x , f ( x ) ).
  2. For each ]x in the domain of f′, f'(x) is the measurement of rate of change of y = f ( x ) with respect to x.
  3. If f ( x ) is the position of a moving object at time x, then v = f ′ ( x ) is the velocity of the object at that time.

3.) A derivative f′(x ) exists whenever exists.

If the limit does not exist at x = c, we say that the function f is discontinuous at x = c.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let u(x) and v(x) be functions such that u(1)=2,u′(1)=3,v(1)=6,v′(1)=−1 If f(x)=u(x)v(x), what is f′(1). Explain...
1. Let u(x) and v(x) be functions such that u(1)=2,u′(1)=3,v(1)=6,v′(1)=−1 If f(x)=u(x)v(x), what is f′(1). Explain how you arrive at your answer. 2. If f(x) is a function such that f(5)=9 and f′(5)=−4, what is the equation of the tangent line to the graph of y=f(x) at the point x=5? Explain how you arrive at your answer. 3. Find the equation of the tangent line to the function g(x)=xx−2 at the point (3,3). Explain how you arrive at your answer....
Suppose the derivative of f exists, and assume that f(1) = 4, and f'(1) = 5....
Suppose the derivative of f exists, and assume that f(1) = 4, and f'(1) = 5. Let g(x) = x^2f(x), and h(x) = f(x)/x-2 a) g' (1) = ?? find the equation of the tangent line to g(x) at x = 1 y = ?? b) h'(1) = ?? Find the equation of the tangent line to h(x) at x = 1 y = ??
Consider f(x) = x2 – 8x. Find its derivative using the limit definition of the derivative....
Consider f(x) = x2 – 8x. Find its derivative using the limit definition of the derivative. Simplify all steps.     a. Find f(x + h).   ____________     b. Find f(x + h) – f(x).   ____________     c. Find [f(x + h) – f(x)] ÷ h.   ____________   d. Find lim (hà0) [f(x + h) – f(x)] ÷ h.   ____________     e. Find an equation of the line tangent to the graph of y = x2 – 8x where x = -3. Present your answer...
1)Consider the curve y = x + 1/x − 1 . (a) Find y' . (b)...
1)Consider the curve y = x + 1/x − 1 . (a) Find y' . (b) Use your answer to part (a) to find the points on the curve y = x + 1/x − 1 where the tangent line is parallel to the line y = − 1/2 x + 5 2) (a) Consider lim h→0 tan^2 (π/3 + h) − 3/h This limit represents the derivative, f'(a), of some function f at some number a. State such an...
1. (5pts.) Compute the derivative dy/dx for y = 7√ 9π + x ^5 /6 +...
1. (5pts.) Compute the derivative dy/dx for y = 7√ 9π + x ^5 /6 + 27e^x . 3. (5pts.) Write the equation of the tangent line to the graph of y = 3 + 8 ln x at the point where x = 1. 4. (5pts.) Determine the slope of the tangent line to the curve 2x^3 + y^3 + 2xy = 14 at the point (1, 2). 5. (5pts.) Compute the derivative dw/dz of the function w =...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical Numbers and determine the intervals where h(x) is increasing and decreasing. Find the point of inflection (if it exists) and determine the intervals where h(x) concaves up and concaves down. Find the local Max/Min (including the y-coordinate)
A) Find the equations of the tangent plane and normal line to the graph of f(x,...
A) Find the equations of the tangent plane and normal line to the graph of f(x, y) =(x/1+x2y) (1, 2). B)Evaluate the limit or explain why it does not exist . lim(x,y)→(0,0) (2x2+5y)2/x4+4y2
16. a. Find the directional derivative of f (x, y) = xy at P0 = (1,...
16. a. Find the directional derivative of f (x, y) = xy at P0 = (1, 2) in the direction of v = 〈3, 4〉. b. Find the equation of the tangent plane to the level surface xy2 + y3z4 = 2 at the point (1, 1, 1). c. Determine all critical points of the function f(x,y)=y3 +3x2y−6x2 −6y2 +2.
Consider the function f(x)= x3 x2 − 4 Express the domain of the function in interval...
Consider the function f(x)= x3 x2 − 4 Express the domain of the function in interval notation: Find the y-intercept: y= . Find all the x-intercepts (enter your answer as a comma-separated list): x= . On which intervals is the function positive? On which intervals is the function negative? Does f have any symmetries? f is even;f is odd;    f is periodic;None of the above. Find all the asymptotes of f (enter your answers as equations): Vertical asymptote (left): ; Vertical...
a.)Consider the function f (x) = 3x/ x^2 +1 i) Evaluate f (x+1), and f (x)+1....
a.)Consider the function f (x) = 3x/ x^2 +1 i) Evaluate f (x+1), and f (x)+1. Explain the difference. Do the same for f (2x) and 2f (x). ii) Sketch y = f (x) on the interval [−2, 2]. iii) Solve the equations f (x) = 1.2 and f (x) = 2. In each case, if a solution does not exist, explain. iv) What is the domain of f (x)? b.)Let f (x) = √x −1 and g (x) =...