Question

1a.) Find the linearization of the function f(x) = (sin x+1)^2 at a = 0. 1b.)...

1a.) Find the linearization of the function f(x) = (sin x+1)^2 at a = 0.

1b.) Differentiate the two functions below.

f(x) = ln(e^x - sin x) ; g(x) = e^-x^2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1a. Find the domain and range of the function. (Enter your answer using interval notation.) f(x)...
1a. Find the domain and range of the function. (Enter your answer using interval notation.) f(x) = −|x + 8|   domain= range= 1b.   Consider the following function. Find the composite functions f ∘ g and g ∘ f. Find the domain of each composite function. (Enter your domains using interval notation.) f(x) = x − 3 g(x) = x2 (f ∘ g)(x)= domain = (g ∘ f)(x) = domain are the two functions equal? y n 1c. Convert the radian...
1. Differentiate the functions: a) f(x)=tan(1/x). b) f(x)=sin(x^2)sin^2(x).
1. Differentiate the functions: a) f(x)=tan(1/x). b) f(x)=sin(x^2)sin^2(x).
1a) Evaluate the limit as x goes to infinity using l'hopitals rule (x^-1/3)/sin(1/x) 1b) Evaluate the...
1a) Evaluate the limit as x goes to infinity using l'hopitals rule (x^-1/3)/sin(1/x) 1b) Evaluate the improper integral (if convergent find it's value) (secx-tanx)dx where a= 0 and b=pi/2
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0...
Suppose f(1) = −1, f(2) = 0, g(1) = 2, g(2) = 7, and f 0 (1) = 1, f0 (2) = 4, g0 (1) = 8, g0 (2) = −4. (a) Suppose h(x) = f(x^2 g(x)). Find h 0 (1). (b) Suppose j(x) = f(x) sin(x − 1). Find j 0 (1). (c) Suppose m(x) = ln(x)+arctan(x) e x+g(2x) . Find m0 (1).
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat...
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat the point(1,3) b) Find the linearization of the function f at the point(1;3)and use it to approximate f(0:9;3:1). c) Explain why f is differentiable at the point(1;3) d)Find the differential of f e) If (x,y) changes from (1,3) to (0.9,3.1), compare the values of ‘change in f’ and df
F(x,y) = (x2+y3+xy, x3-y2) a) Find the linearization of F at the point (-1,-1) b) Explain...
F(x,y) = (x2+y3+xy, x3-y2) a) Find the linearization of F at the point (-1,-1) b) Explain that F has an inverse function G defined in an area of (1, −2) such that that G (1, −2) = (−1, −1), and write down the linearization to G in (1, −2)
Find f(x). f '''(x) = sin x, f(0) = 1, f '(0) = 2, f ''(0)...
Find f(x). f '''(x) = sin x, f(0) = 1, f '(0) = 2, f ''(0) = 3
For f(x,y)=ln(x^2−y+3). -> Find the domain and the range of the function z=f(x,y). -> Sketch the...
For f(x,y)=ln(x^2−y+3). -> Find the domain and the range of the function z=f(x,y). -> Sketch the domain, then separately sketch three distinct level curves. -> Find the linearization of f(x,y) at the point (x,y)=(4,18). -> Use this linearization to determine the approximate value of the function at the point (3.7,17.7).
differentiate. a. e^xtan(x) b. sin(1/sqrtx) c. ln(e^x/sqrt(x^2)+3) d. subscriptx tan(x) e. f(secx) where f'(x)= x/ln(x)
differentiate. a. e^xtan(x) b. sin(1/sqrtx) c. ln(e^x/sqrt(x^2)+3) d. subscriptx tan(x) e. f(secx) where f'(x)= x/ln(x)
Find a Linearization L(x,y) of the function at each point. f(x,y)=x^2+y^2+1 a) (4,2) b) (3,2)
Find a Linearization L(x,y) of the function at each point. f(x,y)=x^2+y^2+1 a) (4,2) b) (3,2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT