Compute the Macaulay Duration of a ten-year 8.8% bond with a par value of $25,000 with semiannual coupons and a redemption value of $22,000. The bond is priced to yield a nominal annual interest rate of 6%.
Time Period | Cf | Period x cash flow | PV of $1 at 4.4% | PV of cash flow |
1 | 1100 | 1100 | 0.957854406 | 1053.64 |
2 | 1100 | 2200 | 0.917485063 | 2018.467 |
3 | 1100 | 3300 | 0.87881711 | 2900.096 |
4 | 1100 | 4400 | 0.841778841 | 3703.827 |
5 | 1100 | 5500 | 0.806301572 | 4434.659 |
6 | 1100 | 6600 | 0.772319514 | 5097.309 |
7 | 1100 | 7700 | 0.739769649 | 5696.226 |
8 | 1100 | 8800 | 0.708591618 | 6235.606 |
9 | 1100 | 9900 | 0.678727603 | 6719.403 |
10 | 1100 | 11000 | 0.650122225 | 7151.344 |
11 | 1100 | 12100 | 0.622722438 | 7534.942 |
12 | 1100 | 13200 | 0.596477431 | 7873.502 |
13 | 1100 | 14300 | 0.571338536 | 8170.141 |
14 | 1100 | 15400 | 0.547259134 | 8427.791 |
15 | 1100 | 16500 | 0.524194573 | 8649.21 |
16 | 1100 | 17600 | 0.502102081 | 8836.997 |
17 | 1100 | 18700 | 0.480940691 | 8993.591 |
18 | 1100 | 19800 | 0.46067116 | 9121.289 |
19 | 1100 | 20900 | 0.4412559 | 9222.248 |
20 | 23100 | 44000 | 0.422658908 | 18596.99 |
Sum | 140437.3 | |||
Macaulay Duration = 140437.3/25000 | 5.617491 |
Get Answers For Free
Most questions answered within 1 hours.