Price of bond = C x PVIFA (r, n) + F x PVIF (r, n)
F = Face value
C = Coupon amount = F x Coupon rate/Annual coupon frequency
r = Periodic interest rate
n = Number of periods to maturity
1)
F = $ 1,000
C = $ 1,000 x 0.1 = $ 100
r = 12 %
n = 20
Price of bond = $ 100 x PVIFA (12%, 20) + $ 1,000 x PVIF (12%, 20)
= $ 100 x 7.4694 + $ 1,000 x 0.1037
= $ 746.94 + $ 103.70 = $ 850.64
2)
F = $ 1,000
C = $ 1,000 x 0.1 = $ 100
r = 8 %
n = 20
Price of bond = $ 100 x PVIFA (8 %, 20) + $ 1,000 x PVIF (8 %, 20)
= $ 100 x 9.8181 + $ 1,000 x 0.2145
= $ 981.81 + $ 214.50 = $ 1,196.31
3)
We concluded that for a constant coupon rate and years to maturity, bond price inversely proportional to the required return.
If required return > Coupon rate; bond price < Par value; Discount bond
If required return < Coupon rate; bond price > Par value; Premium bond
4)
F = $ 1,000
C = $ 1,000 x 0.1 = $ 100
r = 13 %
n = 30
New Price of bond = $ 100 x PVIFA (13 %, 30) + $ 1,000 x PVIF (13 %, 30)
= $ 100 x 7.4957 + $ 1,000 x 0.0256
= $ 749.57 + $ 25.60 = $ 775.17
5)
F = $ 1,000
C = $ 1,000 x 0.1 = $ 100
r = 13 %
n = 10
New Price of bond = $ 100 x PVIFA (13 %, 10) + $ 1,000 x PVIF (13 %, 10)
= $ 100 x 5.4262 + $ 1,000 x 0.2946
= $ 5.4262 + $ 29.46 = $ 837.22
6)
It is concluded that par bond can change to discount bond if required return increased than coupon rate and bond price is inversely proportional to years to maturity. Price of bond nearer to maturity is more than the bond with a larger maturity period.
If required return > Coupon rate, bond price < Par value; Discount bond
7)
Expected dividend D1 = D0 x (1 + g)
= $ 2 x (1+0.03)
= $ 2 x 1.03 = $ 2.06
As per DDM,
Price of stock = D1 / (r – g)
= $ 2.06/ (10 % - 3 %)
= $ 2.06/ (0.1 – 0.03)
= $ 2.06/0.07
= $ 29.4285714285714 or $ 29.43
Current price of stock is $ 29.43
Get Answers For Free
Most questions answered within 1 hours.