Let S = $58, s = 29%, r = 6%, and d = 3% (continuously compounded). Compute the Black-Scholes price for a $50-strike European put option with 9 months until expiration.
Answer= $1.92
Please show all the work to get that answer.
Thanks
As per Black Scholes Model | ||||||
Value of put option = N(-d2)*K*e^(-r*t)-S*N(-d1)*e^(-q*t) | ||||||
Where | ||||||
S = Current price = | 58 | |||||
t = time to expiry = | 0.75 | |||||
K = Strike price = | 50 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 3% | |||||
σ = Std dev = | 29% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(58/50)+(0.06-0.03+0.29^2/2)*0.75)/(0.29*0.75^(1/2)) | ||||||
d1 = 0.80613 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.80613-0.29*0.75^(1/2) | ||||||
d2 = 0.554983 | ||||||
N(-d1) = Cumulative standard normal dist. of -d1 | ||||||
N(-d1) =0.210084 | ||||||
N(-d2) = Cumulative standard normal dist. of -d2 | ||||||
N(-d2) =0.289453 | ||||||
Value of put= 0.289453*50*e^(-0.06*0.75)-58*0.210084*e^(-0.03*0.75) | ||||||
Value of put= 1.92 |
Get Answers For Free
Most questions answered within 1 hours.