Question

Use the Black-Scholes model to calculate the theoretical value of a DBA December 45 call option....

Use the Black-Scholes model to calculate the theoretical value of a DBA December 45 call option. Assume that the risk free rate of return is 6 percent, the stock has a variance of 36 percent, there are 91 days until expiration of the contract, and DBA stock is currently selling at $50 in the market. [Hint: Use Excel's NORMSDIST() function to find N(d1) and N(d2)]

Homework Answers

Answer #1

Std dev = variance^(1/2)= 0.36^(1/2) = 60%

As per Black Scholes Model
Value of call option = S*N(d1)-N(d2)*K*e^(-r*t)
Where
S = Current price = 50
t = time to expiry = 0.249315
K = Strike price = 45
r = Risk free rate = 6.0%
q = Dividend Yield = 0.00%
σ = Std dev = 60%
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2)
d1 = (ln(50/45)+(0.06-0+0.6^2/2)*0.249315)/(0.6*0.249315^(1/2))
d1 = 0.55141
d2 = d1-σ*t^(1/2)
d2 =0.55141-0.6*0.249315^(1/2)
d2 = 0.251821
N(d1) = Cumulative standard normal dist. of d1
N(d1) =0.709324
N(d2) = Cumulative standard normal dist. of d2
N(d2) =0.59941
Value of call= 50*0.709324-0.59941*45*e^(-0.06*0.249315)
Value of call= 8.89
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Black-Scholes model to price a European call option Use the Black-Scholes formula to find the...
Use Black-Scholes model to price a European call option Use the Black-Scholes formula to find the value of a call option based on the following inputs. [Hint: to find N(d1) and N(d2), use Excel normsdist function.] (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 57 Exercise price $ 61 Interest rate 0.08 Dividend yield 0.04 Time to expiration 0.50 Standard deviation of stock’s returns 0.28 Call value            $
Use the Black-Scholes formula to find the value of a call option based on the following...
Use the Black-Scholes formula to find the value of a call option based on the following inputs. [Hint: to find N(d1) and N(d2), use Excel normsdist function.] (Round your final answer to 2 decimal places. Do not round intermediate calculations.) Stock price $ 57 Exercise price $ 61 Interest rate 0.08 Dividend yield 0.04 Time to expiration 0.50 Standard deviation of stock’s returns 0.28
1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model,...
1. Calculate the value of the D1 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $65.70 Option strike price: $74 Time to expiration: 7 months Continuously compounded annual risk-free rate: 3.79% Standard deviation of stock return: 22% 2. Calculate the value of the D2 parameter for a call option in the Black-Scholes model, given the following information: Current stock price: $126.77 Option strike price: $132 Time to expiration: 6 months Continuously compounded...
Working with the Black-Scholes model and a call option for a particular stock, you calculate the...
Working with the Black-Scholes model and a call option for a particular stock, you calculate the following values: d1 = 0.73 d2=0.58 N(d1)= 0.85 N(d2) = 0.57 C0 = 3.46 Given the information that you have, what is the best estimate as to what the new call price would be if shares of the underlying stock increased by $0.24? For this question, you do not need to calculate any of the Black-Scholes equations to solve for d1, d2, or C0
Excel Online Structured Activity: Black-Scholes Model Black-Scholes Model Current price of underlying stock, P $33.00 Strike...
Excel Online Structured Activity: Black-Scholes Model Black-Scholes Model Current price of underlying stock, P $33.00 Strike price of the option, X $40.00 Number of months unitl expiration 5 Formulas Time until the option expires, t #N/A Risk-free rate, rRF 3.00% Variance, σ2 0.25 d1 = #N/A N(d1) = 0.5000 d2 = #N/A N(d2) = 0.5000 VC = #N/A
Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the...
Black-Scholes Model Use the Black-Scholes Model to find the price for a call option with the following inputs: (1) Current stock price is $21. (2) Strike price is $24. (3) Time to expiration is 5 months. (4) Annualized risk-free rate is 4%. (5) Variance of stock return is 0.17. Round your answer to the nearest cent. In your calculations round normal distribution values to 4 decimal places. Please show step by step calculations in excel. Thank you
Use the Black-Scholes option pricing model for the following problem. Given: stock price=$60, exercise price=$50, time...
Use the Black-Scholes option pricing model for the following problem. Given: stock price=$60, exercise price=$50, time to expiration=3 months, standard deviation=35% per year, and annual interest rate=6%.No dividends will be paid before option expires. What are the N(d1), N(d2), and the value of the call option, respectively?
. Use the Black-Scholes model to find the price for a call option with the following...
. Use the Black-Scholes model to find the price for a call option with the following inputs: (1) current stock price is $45, (2) exercise price is $50, (3) time to expiration is 3 months, (4) annualized risk-free rate is 3%, and (5) variance of stock return is 0.50. . Using the information from question above, find the value of a put with a $50 exercise price.
You are given the following information about a European call option on Stock XYZ. Use the...
You are given the following information about a European call option on Stock XYZ. Use the Black-Scholes model to determine the price of the option: Shares of Stock XYZ currently trade for 90.00. The stock pays dividends continuously at a rate of 3% per year. The call option has a strike price of 95.00 and one year to expiration. The annual continuously compounded risk-free rate is 6%. It is known that d1 – d2 = .3000; where d1 and d2...
This question refers to the Black-Scholes-Merton model of European call option pricing for a non-dividend-paying stock....
This question refers to the Black-Scholes-Merton model of European call option pricing for a non-dividend-paying stock. Please note that one or more of the answer choices may lack some mathematical formatting because of limitations of Canvas Quizzes. Please try to overlook such issues when judging the choices. Which quantity can be interpreted as the present value of the strike price times the probability that the call option is in the money at expiration? Group of answer choices Gamma K∙e^(rT)∙N(d2) Delta...